微波加热对乳清分离蛋白功能特性的影响及机制研究

郭扬凯 陈丽丽 冯娇娇 刘雪梅 赵利 白春清

郭扬凯,陈丽丽,冯娇娇,等. 微波加热对乳清分离蛋白功能特性的影响及机制研究[J]. 食品工业科技,2021,42(18):25−33. doi:  10.13386/j.issn1002-0306.2020120200
引用本文: 郭扬凯,陈丽丽,冯娇娇,等. 微波加热对乳清分离蛋白功能特性的影响及机制研究[J]. 食品工业科技,2021,42(18):25−33. doi:  10.13386/j.issn1002-0306.2020120200
GUO Yangkai, CHEN Lili, FENG Jiaojiao, et al. Effect and Mechanism of Microwave Heating on the Functional Properties of Whey Protein Isolate[J]. Science and Technology of Food Industry, 2021, 42(18): 25−33. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120200
Citation: GUO Yangkai, CHEN Lili, FENG Jiaojiao, et al. Effect and Mechanism of Microwave Heating on the Functional Properties of Whey Protein Isolate[J]. Science and Technology of Food Industry, 2021, 42(18): 25−33. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120200

微波加热对乳清分离蛋白功能特性的影响及机制研究

doi: 10.13386/j.issn1002-0306.2020120200
基金项目: 江西省教育厅一般项目(GJJ201114),江西省现代农业产业技术体系建设专项项目(赣财文指[2018]13号),江西科技师范大学青年拔尖人才项目(2020QNBJRC006)
详细信息
    作者简介:

    郭扬凯(1996−),男,硕士研究生,研究方向:食品加工,E-mail:yk666_guo@126.com

    通讯作者:

    白春清(1984−),女,博士,副教授,研究方向:功能性食品开发,E-mail:chunqingbai01@hotmail.com

  • 中图分类号: TS201.2

Effect and Mechanism of Microwave Heating on the Functional Properties of Whey Protein Isolate

  • 摘要: 本研究采用微波加热促进美拉德反应对乳清分离蛋白(Whey Protein Isolate,WPI)进行改性。以乳化性及抗氧化活性为主要指标,系统研究了微波功率、微波加热时间、pH以及乳糖与乳清粉质量比对乳清蛋白美拉德反应产物(Maillard Reaction Products,MRPs)功能特性的影响,对其工艺进行了优化,并对反应过程中二级结构的变化及氨基酸组成进行了分析。结果表明:优化后的微波加热条件为pH8.5、乳清蛋白-乳糖质量比5:5、微波加热时间7 min;在该条件下制备所得MRPs的乳化活力指数、乳化稳定指数和DPPH自由基清除率分别为0.35 m2/g、88.39 min和6.60%;红外分析结果显示乳糖与WPI发生了共价结合,微波加热促进了该反应的进程,导致氮羟基和羰基含量增多,产生了复杂的美拉德中间产物和醛酮类化合物;同时促使蛋白质二级结构由紧密向松散“溶胀”结构转化,在转变的过程中,大部分紧密有序结构首先转变成松散有序结构,进而转变成松散无序状态,并可能伴随小部分紧密结构经长时间加热后相互转变。氨基酸分析进一步证实,微波加热降低了体系氨基酸总量,可能是WPI自由氨基酸参与美拉德反应所致。
  • 图  1  微波加热时间、功率对MRPs乳化稳定性(A)和乳化活性(B)的影响

    Figure  1.  Effects of microwave heating time and power on the ESI(A)and EAI(B)of MRPs

    图  2  微波加热时间、功率对MRPs抗氧化活性的影响

    Figure  2.  Effects of microwave heating time and power on antioxidant activity of MRPs

    图  3  pH对MRPs乳化稳定性(A)和乳化活性(B)的影响

    Figure  3.  Effects of pH on ESI(A)and EAI(B)of MRPs

    图  4  pH对MRPs抗氧化活性的影响

    Figure  4.  Effect of pH on antioxidant activity of MRPs

    图  5  乳清蛋白与乳糖质量比对MRPs乳化稳定性的影响

    Figure  5.  Effect of the ratio of whey protein to lactose on the emulsion stability of MRPs

    图  6  乳清蛋白与乳糖质量比对MRPs乳化活性的影响

    Figure  6.  Effect of the ratio of whey protein to lactose on the emulsifying activity of MRPs

    图  7  乳清蛋白与乳糖质量比对MRPs抗氧化性的影响

    Figure  7.  Effect of weight ratio of whey protein to lactose on the antioxidant activity of MRPs

    图  8  不同加热时间的MRPs红外光谱

    Figure  8.  Infrared spectra of MRPs after heated for different time

    图  9  MRPs酰胺Ⅰ带的红外光谱及高斯曲线拟合图

    Figure  9.  Infrared spectra and Gaussian fitting curves in amide Ⅰ region of MRPs

    注:0 min(A);3 min(B);7 min(C);15 min(D);数字1、2、3、4、5、6为峰的序数。

    表  1  L9(34)正交设计因素水平

    Table  1.   Factor and level of L9(34) orthogonal design

    水平
    因素
    A微波加热时间(min)B pHC乳清蛋白:乳糖(w:w)
    1585:4
    278.55:5
    3995:6
    下载: 导出CSV

    表  2  L9(34)工艺正交试验设计结果

    Table  2.   Result of the L9(34) orthogonal experiment

    实验号ABCESI(min)
    111133.25
    212280.69
    313327.56
    421236.88
    522383.45
    623148.1
    731330.67
    832165.43
    933244.22
    K147.16733.648.927
    K256.14376.52353.930
    K346.77339.96047.227
    极差R9.37042.9236.703
    下载: 导出CSV

    表  3  MRPs酰胺Ⅰ带谱带指认结果

    Table  3.   Band assignments in the amide Ⅰ spectral region of MRPs

    样品
    二级结构构象百分含量(%)
    $\alpha $-螺旋$\,\beta$-折叠$\,\beta$-转角无规则卷曲
    0 min26.4727.8518.7326.95
    3 min25.4622.6627.6624.22
    7 min27.2519.9327.6325.19
    15 min30.6316.6525.0527.67
    下载: 导出CSV

    表  4  样品氨基酸组成测量成果

    Table  4.   Amino acid composition results

    AA
    氨基酸
    氨基酸浓度(nmol/L)
    0 min7 min15 min
    Asp天门冬氨酸9.4686.4407.308
    Thr苏氨酸6.3474.7435.132
    Ser丝氨酸9.0026.8207.339
    Glu谷氨酸22.41818.88518.994
    Gly甘氨酸4.8853.7203.548
    Ala丙氨酸6.5805.2724.949
    Val缬氨酸8.0507.8446.909
    Met蛋氨酸0.3130.1600.203
    Ile异亮氨酸5.9215.6855.065
    Leu亮氨酸12.64911.97210.863
    Tyr赖氨酸4.6324.4974.047
    Phe苯丙氨酸4.0304.0813.581
    Lys赖氨酸5.7285.4704.900
    Pro脯氨酸57.35458.97358.174
    His组氨酸2.3402.0091.709
    Arg精氨酸3.1332.6022.274
    总计162.850149.173144.950
    下载: 导出CSV
  • [1] Wang W, Zhang C, Huang B, et al. Physicochemical properties and bioactivity of whey protein isolate-inulin conjugates obtained by Maillard reaction[J]. International Journal of Biological Macromolecules,2020,150:326−335. doi:  10.1016/j.ijbiomac.2020.02.086
    [2] 戚繁. 美拉德反应在食品工业中的研究进展[J]. 现代食品,2020,10(19):44−46. [Qi F. Research progress of Maillard reaction in food industry[J]. Modern Food,2020,10(19):44−46.
    [3] Soboleva A, Vikhnina M, Grishina T, et al. Probing protein glycation by chromatography and mass spectrometry: Analysis of glycation adducts[J]. International Journal of Molecular Sciences,2017,18(12):2557. doi:  10.3390/ijms18122557
    [4] 林巍, 曲国强, 高健, 等. 糖对紫花芸豆肽美拉德反应产物抗氧化活性及结构的影响[J]. 食品科技,2019,44(11):298−301. [Lin W, Qu G Q, Gao J, et al. Effects of sugar on the antioxidant activity and structure of the Maillard reaction products of purple kidney bean peptides[J]. Food Science and Technology,2019,44(11):298−301.
    [5] Nasrollahzadeh F, Varidi M, Koocheki A, et al. Effect of microwave and conventional heating on structural, functional and antioxidant properties of bovine serum albumin-maltodextrin conjugates through Maillard reaction[J]. Food Research International,2017,100(2):289−297.
    [6] Xiang S, Zou H, Liu Y, et al. Effects of microwave heating on the protein structure, digestion properties and Maillard products of gluten[J]. Journal of Food Science and Technology,2020,57(6):2139−2149. doi:  10.1007/s13197-020-04249-0
    [7] Duan D, Tu Z, Wang H, et al. A comparative analysis of the antigenicity and the major components formed from the glucose/ovalbumin model system under microwave irradiation and conventional heating[J]. Journal of Food Processing and Preservation,2018,42(12):13818. doi:  10.1111/jfpp.13818
    [8] Jiang Z, Li M, Zhao J, et al. Effects of ultrafiltration and hydrolysis on antioxidant activities of Maillard reaction products derived from whey protein isolate and galactose[J]. LWT-Food Science and Technology,2019,113:108313. doi:  10.1016/j.lwt.2019.108313
    [9] Liu L, Li X, Du L, et al. Effect of ultrasound assisted heating on structure and antioxidant activity of whey protein peptide grafted with galactose[J]. LWT-Food Science and Technology,2019,109:130−136. doi:  10.1016/j.lwt.2019.04.015
    [10] Karbasi M, Madadlou A. Interface-related attributes of the Maillard reaction-born glycoproteins[J]. Critical Reviews in Food Science and Nutrition,2018,58(10):1595−1603. doi:  10.1080/10408398.2016.1270894
    [11] Leiva G E, Naranjo G B, Malec L S. A study of different indicators of Maillard reaction with whey proteins and different carbohydrates under adverse storage conditions[J]. Food Chemistry,2017,215:410−416. doi:  10.1016/j.foodchem.2016.08.003
    [12] Shi Y, Liang R, Chen L, et al. The antioxidant mechanism of Maillard reaction products in oil-in-water emulsion system[J]. Food Hydrocolloids,2019,87:582−592. doi:  10.1016/j.foodhyd.2018.08.039
    [13] Kim J, Lee Y. Antioxidant activity of Maillard reaction products derived from aqueous glucose/glycine, diglycine, and triglycine model systems as a function of heating time[J]. Food Chemistry,2009,116:227−232. doi:  10.1016/j.foodchem.2009.02.038
    [14] 林巍, 刘晓兰, 任健, 等. 还原糖对芸豆清蛋白糖基化改性产物乳化性及结构的影响[J]. 食品与机械,2019,35(10):170−173. [Lin W, Liu X L, Ren J, et al. Effect of three reducing sugars on emulsifying property and structure of Maillard products of kidney bean protein[J]. Food & Machinery,2019,35(10):170−173.
    [15] 廖阳, 胡居吾, 马永花, 等. 湿热条件下低聚木糖-乳清分离蛋白的美拉德反应及产物乳化性与流变性研究[J]. 现代食品科学,2019,355(12):20−28. [Liao Y, Hu J W, Ma Y H, et al. Maillard reaction of xylooligosaccharides with whey protein isolate (WPI) under wet heating conditions and emulsification and rheology of Maillard reaction products[J]. Modern Food Science,2019,355(12):20−28.
    [16] 胡坤, 方少瑛, 王秀霞, 等. 大豆分离蛋白-麦芽糊精Maillard反应共聚物的乳化特性研究[J]. 食品工业科技,2005,26(6):72−75, 78. [Hu K, Fang S Y, Wang X X, et al. Emulsification properties of soybean protein isolate-maltodextrin Maillard reaction copolymer[J]. Sci Technol Food Ind,2005,26(6):72−75, 78. doi:  10.3969/j.issn.1002-0306.2005.06.017
    [17] O’Regan J, Mulvihill D M. Preparation, characterisation and selected functional properties of sodium caseinate-maltodextrin conjugates[J]. Food Chemistry,2009,115:1257−126. doi:  10.1016/j.foodchem.2009.01.045
    [18] 张兰. 微波场内乳蛋白-乳糖模型的变化研究[D]. 南昌: 南昌大学, 2014.

    Zhang L. Study on the changes of milk protein-lactose model in microwave field[D]. Nanchang: Nanchang University, 2014.
    [19] Ullah S F, Khan N M, Ali F, et al. Effects of Maillard reaction on physicochemical and functional properties of walnut protein isolate[J]. Food Science and Biotechnology,2019,28(5):1391−1399. doi:  10.1007/s10068-019-00590-z
    [20] 杜姗姗. 亚麻籽胶-乳清蛋白美拉德反应产物功能特性研究[D]. 武汉: 武汉工程大学, 2018.

    Du S S. Study on functional characteristics of Maillard reaction products of flaxseed gum and whey protein[D]. Wuhan: Wuhan Institute of Technology, 2018.
    [21] 谢欢. 不同时空条件下微波对蛋清蛋白糖基化反应的影响[D]. 南昌: 南昌大学, 2017.

    Xie H. Effects of microwave on the glyco-sylation of egg white protein under different space-time conditions[D]. Nanchang: Nanchang University, 2017.
    [22] Abdelhedi O, Mora L, Jemil I, et al. Effect of ultrasound pretreatment and Maillard reaction on structure and antioxidant properties of ultrafiltrated smooth-hound viscera proteins-sucrose conjugates[J]. Food Chemistry,2017,230:507−515. doi:  10.1016/j.foodchem.2017.03.053
    [23] 毕伟伟. 微波对酪蛋白的糖基化反应及产物功能性质的研究[D]. 哈尔滨: 东北农业大学, 2015.

    Bi W W. Study on microwave-assisted glycosylation of casein and its functional properties[D]. Harbin: Northeast Agricultural University, 2015.
    [24] Wang H Y, Qian H, Yao W R. Melanoidins produced by the Maillard reaction: Structure and biological activity[J]. Food Chemistry,2011,128(3):573−584. doi:  10.1016/j.foodchem.2011.03.075
    [25] 乔丹. 微波场内美拉德反应对鳜鱼小清蛋白的影响研究[D]. 杭州: 浙江工商大学, 2019.

    Qiao D. Effects of Maillard reaction in microwave field on small albumin of mandarin fish[D]. Hangzhou: Zhejiang Gongshang University, 2019.
    [26] Mengíbar M, Miralles B, Heras A. Use of soluble chitosans in Maillard reaction products with β-lactoglobulin. Emulsifying and antioxidant properties[J]. LWT-Food Science and Technology,2017,75:440−446. doi:  10.1016/j.lwt.2016.09.016
    [27] 耿浩, 刘悦, 梁新婷, 等. 热诱导对乳清浓缩蛋白和分离蛋白乳化性及稳定性的影响[J]. 中国食品学报,2016,16(8):71−77. [Geng H, Liu Y, Liang X T, et al. Effects of heat induction on emulsification and stability of whey protein concentrate and protein isolate[J]. Chinese Journal of Food Science and Technology,2016,16(8):71−77.
    [28] Stuart B H. Infrared spectroscopy: Fundamentals and applications[J]. Experimental Thermodynamics,2004,41(4):325−385.
    [29] 王玉堃. 干热过程中美拉德反应对蛋清粉凝胶性的改性研究[D]. 无锡: 江南大学. 2011.

    Wang Y K. Study on the modification of gelatability of egg white powder by Maillard reaction in dry heat process[D]. Wuxi: Jiangnan University. 2011.
    [30] 葛可佑. 中国营养师培训教材[M]. 北京: 人民卫生出版社, 2020: 18-23.

    Ge K Y. Training materials for dietitians in China[M]. Beijing: People's Medical Publishing House, 2020: 18-23.
    [31] Blank I, Davidek T, Devaud S, et al. Analysis of Amadori compounds by high performance anion exchange chromatography-pulse amperometric detection[C]// Holland: Elsevier: 2002: 263-267.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  23
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-23
  • 网络出版日期:  2021-08-03
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。