猴头菇高品质膳食纤维的制备及理化性质分析

徐新乐 刘婷婷 张闪闪 刘鸿铖 同政泉 王大为

徐新乐,刘婷婷,张闪闪,等. 猴头菇高品质膳食纤维的制备及理化性质分析[J]. 食品工业科技,2021,42(18):167−173. doi:  10.13386/j.issn1002-0306.2020120194
引用本文: 徐新乐,刘婷婷,张闪闪,等. 猴头菇高品质膳食纤维的制备及理化性质分析[J]. 食品工业科技,2021,42(18):167−173. doi:  10.13386/j.issn1002-0306.2020120194
XU Xinle, LIU Tingting, ZHANG Shanshan, et al. Preparation, Physicochemical Properties of High-quality Dietary Fiber from Hericium erinaceus[J]. Science and Technology of Food Industry, 2021, 42(18): 167−173. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120194
Citation: XU Xinle, LIU Tingting, ZHANG Shanshan, et al. Preparation, Physicochemical Properties of High-quality Dietary Fiber from Hericium erinaceus[J]. Science and Technology of Food Industry, 2021, 42(18): 167−173. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120194

猴头菇高品质膳食纤维的制备及理化性质分析

doi: 10.13386/j.issn1002-0306.2020120194
基金项目: “十三五”国家重点研发计划重点专项(2018YFD0400204)
详细信息
    作者简介:

    徐新乐(1996−),女,硕士研究生,研究方向:谷物食品科学与副产物高值化利用,E-mail:1697297770@qq.com

    通讯作者:

    王大为(1960−),男,博士,教授,研究方向:粮油植物蛋白工程与功能食品,E-mail:xcpyfzx@163.com

  • 中图分类号: TS219

Preparation, Physicochemical Properties of High-quality Dietary Fiber from Hericium erinaceus

  • 摘要: 以提取猴头菇(Hericium erinaceus,HE)多糖和蛋白后所剩残渣为原料,通过正交试验优化超声-微波辅助酶法(Ultrasound-microwave assisted enzymatic method,UMAE)制备猴头菇高品质膳食纤维(HE-DF2)的最佳工艺,并对其结构及理化性质进行分析。结果表明:在物料粒度80目、酶添加量3%、微波温度55 ℃、超声功率300 W、酶解时间75 min时,HE-DF2的SDF含量为12.89%±0.12%,持油力为(2.05±0.01)g/g、胆固醇吸附能力为(36.84±0.59)mg/g;与参考GB 5009.88-2014《食品中膳食纤维的测定》制备的普通猴头菇膳食纤维(HE-DF1)相比,HE-DF2 内部结构发生改变,产生更多的亲水基团,其持水力、持油力、膨胀力、结合水力和胆固醇吸附能力均显著提高(P<0.05),并且符合高品质膳食纤维的要求。说明UMAE有利于猴头菇膳食纤维功能性质的改善。
  • 图  1  样品的红外光谱扫描

    Figure  1.  Infrared spectrum scanning of samples

    图  2  样品的X-射线衍射图

    Figure  2.  X-ray diffraction pattern of samples

    表  1  正交试验因素和水平

    Table  1.   Orthogonal test factors and levels

    水平因素
    A
    物料粒度(目)
    B
    酶添加量(%)
    C
    微波温度(℃)
    D
    超声功率(W)
    E
    酶解时间(min)
    1 60 2 45 25045
    28035030060
    310045535075
    412056040090
    下载: 导出CSV

    表  2  基础成分分析(%)

    Table  2.   Basic ingredients analysis (%)

    样品水分脂肪蛋白质灰分TDFIDFSDF
    HER4.09±0.26a1.19±0.11a3.06±0.17a4.56±0.06a87.35±0.37b83.65±0.77b3.63±0.38c
    HE-DF14.05±0.11a1.12±0.06b1.73±0.19b4.57±0.09a88.93±0.73a84.67±0.45a4.16±0.10b
    HE-DF24.08±0.15a1.13±0.09b1.57±0.24c4.53±0.04a89.28±0.51a76.23±0.51c12.89±0.12a
    注:TDF为总膳食纤维;同列小写字母不同表示有显著差异(P<0.05);表3同。
    下载: 导出CSV

    表  3  物料粒度对HE-DF2的SDF含量、持油力和胆固醇吸附能力的影响

    Table  3.   Effects of material particle size on SDF content, OHC and CBC of HE-DF2

    物料粒度(目)SDF含量(%)OHC(g/g)CBC(mg/g)
    407.84±0.27e1.34±0.05e21.28±2.60d
    608.96±0.13d1.64±0.04d29.86±0.54b
    809.83±0.15b2.21±0.02c33.25±0.27a
    10010.33±0.04a2.85±0.15b30.83±0.72ab
    1209.20±0.39c3.02±0.03a26.64±1.18c
    下载: 导出CSV

    表  4  酶添加量对HE-DF2的SDF含量、持油力和胆固醇吸附能力的影响

    Table  4.   Effects of enzyme addition on SDF content, OHC and CBC of HE-DF2

    酶添加量(%)SDF含量(%)OHC(g/g)CBC(mg/g)
    17.33±0.13e1.68±0.05e28.17±0.59d
    29.51±0.19b1.97±0.06c30.33±0.26c
    39.83±0.15a2.21±0.02a33.25±0.27ab
    48.96±0.14cd2.09±0.04b34.22±1.04a
    59.10±0.12c1.96±0.05c33.56±1.29ab
    68.77±0.21d1.92±0.01c32.44±0.73b
    下载: 导出CSV

    表  5  微波温度对HE-DF2的SDF含量、持油力和胆固醇吸附能力的影响

    Table  5.   Effects of microwave temperature on SDF content, OHC and CBC of HE-DF2

    微波温度(℃)SDF含量(%)OHC(g/g)CBC(mg/g)
    357.07±0.20d2.11±0.08c21.95±0.17c
    408.25±0.47c2.12±0.01bc23.81±1.33c
    458.95±0.51c2.17±0.01abc27.96±1.26b
    509.83±0.15b2.21±0.02a33.25±0.27a
    5511.49±0.81a2.18±0.04abc29.72±1.23b
    609.92±0.11b2.20±0.06ab23.25±1.60c
    下载: 导出CSV

    表  6  超声功率对HE-DF2的SDF含量、持油力和胆固醇吸附能力的影响

    Table  6.   Effects of ultrasonic power on SDF content, OHC and CBC of HE-DF2

    超声功率(W)SDF含量(%)OHC(g/g)CBC(mg/g)
    2508.60±0.13c1.82±0.13b33.53±1.04b
    3009.29±0.37b2.18±0.06a34.69±0.21a
    35010.06±0.21a2.09±0.05a32.53±0.63b
    4009.83±0.15a2.21±0.02a33.25±0.27b
    4509.92±0.13a1.53±0.06c31.17±0.05c
    5008.44±0.04c1.43±0.08c29.56±0.80d
    下载: 导出CSV

    表  7  酶解时间对HE-DF2的SDF含量、持油力和胆固醇吸附能力的影响

    Table  7.   Effects of enzymatic hydrolysis time on SDF content, OHC and CBC of HE-DF2

    酶解时间(min)SDF含量(%)OHC(g/g)CBC(mg/g)
    157.78±0.04e1.47±0.04e27.36±1.67d
    308.48±0.11d1.67±0.03d31.81±1.62bc
    459.83±0.15b2.21±0.02b33.25±0.27b
    6010.16±0.12a2.29±0.01a33.14±1.42bc
    759.04±0.17c1.95±0.02c34.44±0.43a
    908.62±0.13d1.91±0.06c30.69±1.66c
    下载: 导出CSV

    表  8  正交试验结果

    Table  8.   Orthogonal experimental results

    实验号ABCDESDF含量(%)OHC(g/g)CBC(mg/g)综合评分(分)
    1111118.83±0.202.09±0.0718.38±0.4764.63±2.30
    21222210.84±0.152.04±0.0226.00±1.4776.91±0.10
    31333312.54±0.261.66±0.0328.92±0.1880.99±1.75
    41444411.70±0.142.11±0.0326.21±0.0080.48±1.67
    52123411.20±0.112.05±0.0029.38±0.7181.05±2.02
    62214312.61±0.282.04±0.0235.46±1.1890.55±0.20
    72341212.25±0.332.06±0.0329.88±0.4784.90±0.71
    82432111.48±0.172.50±0.0333.46±0.9489.88±1.11
    93134211.04±0.292.63±0.1621.81±1.0679.92±3.83
    103243112.12±0.162.50±0.0121.14±0.0081.53±0.77
    113312410.42±0.272.36±0.0120.06±0.9472.76±2.13
    12342139.08±0.162.98±0.0622.18±1.2477.57±0.38
    134142312.61±0.372.46±0.0722.51±0.5383.83±1.88
    144231412.53±0.292.85±0.0819.14±1.0684.68±2.11
    15432419.25±0.122.26±0.0019.76±0.1868.81±0.12
    164413211.86±0.182.23±0.0418.56±0.2475.78±2.01
    k175.5677.1476.2177.6676.52最优组合A2B2C3D2E3
    影响顺序A>C>B>E>D
    k286.5683.5475.8981.0379.28
    k378.3777.0983.6880.0082.92
    k478.0880.7982.7979.8879.84
    R11.006.457.793.376.40
    下载: 导出CSV

    表  9  方差分析结果

    Table  9.   ANOVA result of orthogonal test

    变异来源III 型平方和自由度均方F显著性
    A物料粒度549.023183.0156.69**
    B酶添加量234.51378.1724.21**
    C微波温度416.883138.9643.04**
    D超声功率48.38316.134.99*
    E酶解时间165.40355.1317.08**
    误差51.65163.23
    总变异204437.8532
    注:*差异显著,P<0.05;**差异极显著,P<0.01。
    下载: 导出CSV

    表  10  相关性分析结果

    Table  10.   Result of correlation analysis

    指标OHC(g/g)CBC(mg/g)
    SDF含量(%)

    Pearson 相关性−0.180.43
    显著性(双侧)0.320.01
    N3232
    注:*差异显著,P<0.05;**差异极显著,P<0.01。
    下载: 导出CSV

    表  11  样品的理化性质分析

    Table  11.   Analysis of physical and chemical properties of samples

    样品
    WHC(g/g)
    OHC(g/g)
    SC(mL/g)
    WBC(g/g)
    CBC(mg/g)
    pH=2.0pH=7.0
    HE-DF17.11±0.07b1.18±0.15b7.16±0.29b3.42±0.16b12.75±0.75a28.89±0.49b
    HE-DF210.76±0.10a2.05±0.01a13.82±0.29a5.47±0.15a13.69±0.52a36.84±0.59a
    下载: 导出CSV
  • [1] Liu X, Ren Z, Yu R, et al. Structural characterization of enzymatic modification of Hericium erinaceus polysaccharide and its immune-enhancement activity[J]. International Journal of Biological Macromolecules,2020:166.
    [2] 丁志超. 猴头菇活性多糖的制备、理化特性及其降血糖作用研究[D]. 镇江: 江苏大学, 2019.

    Ding Z C. Preparation, physicochemical propreties and hypoglycemic activities of polysaccharides from Hericium erinaceus[D]. Zhenjiang: Jiangsu University, 2019.
    [3] Wang X Y, Yin J Y, Nie S P, et al. Isolation, purification and physicochemical properties of polysaccharide from fruiting body of Hericium erinaceus and its effect on colonic health of mice[J]. International Journal of Biological Macromolecules,2018:S0141813017321463.
    [4] 郑超群. 基于肠道菌群靶点的猴头菌蛋白免疫活性研究[D]. 广州: 广州中医药大学, 2017.

    Zheng C Q. Evaluate the Immunomodulatory activity of a fungal protein extracted from Hericium erinaceus based on gut microbiota[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2017.
    [5] Liao J, Huang H. A fungal chitin derived from Hericium erinaceus residue: Dissolution, gelation and characterization[J]. International Journal of Biological Macromolecules,2020,152:456−464. doi:  10.1016/j.ijbiomac.2020.02.309
    [6] Liao J, Huang H. Extraction of a novel fungal chitin from Hericium erinaceus residue using multistep mild procedures[J]. International Journal of Biological Macromolecules,2019.
    [7] 李聪, 王稳航. 食用菌膳食纤维研究的新进展[J]. 中国食品添加剂,2015(10):159−164. [Li C, Wang W H. New research advances in mushroom based dietary fiber[J]. China Food Additives,2015(10):159−164. doi:  10.3969/j.issn.1006-2513.2015.10.020
    [8] 陈龙, 郭晓晖, 李富华, 等. 食用菌膳食纤维功能特性及其应用研究进展[J]. 食品科学,2012,33(11):303−307. [Chen L, Guo X H, Li F H, et al. Research progress on the function and application of dietary fiber from edible fungi[J]. Food Science,2012,33(11):303−307.
    [9] Cheung, Peter C K. Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits[J]. Food Science & Human Wellness,2013,2(3-4):162−166.
    [10] 郑建仙. 功能性食品(第二卷)[M]. 北京: 中国轻工业出版社, 1999: 50-65.

    Zheng J X. Functional food(volume 2)[M]. Beijing: China Light Industry Press, 1999: 50-65.
    [11] Guerrero P, Beatty E, Kerry J P, et al. Extrusion of soy protein with gelatin and sugars at low moisture content[J]. Journal of Food Engineering,2012,110(1):53−59. doi:  10.1016/j.jfoodeng.2011.12.009
    [12] 李西腾. 响应面法优化鸡腿菇可溶性膳食纤维提取工艺[J]. 中国食品添加剂,2018(11):125−130. [Li X T. Optimization of extraction of soluble dietary fiber from Coprinus comatus by response surface methodology[J]. China Food Additives,2018(11):125−130. doi:  10.3969/j.issn.1006-2513.2018.11.015
    [13] Xue Z, Ma Q, Guo Q, et al. Physicochemical and functional properties of extruded dietary fiber from mushroom Lentinula edodes residues[J]. Food Bioence,2019,32:100452.
    [14] 刘学成. 金针菇膳食纤维提取、改性及应用研究[D]. 泰安: 山东农业大学, 2020.

    Liu X C. Study on extraction, modification and application of dietary fiber from Flammulina velutipes[D]. Taian: Shandong Agricultural University, 2020.
    [15] 文攀, 裴志胜, 朱婷婷, 等. 黄皮果肉可溶性膳食纤维制备工艺优化及单糖组成和结构表征[J]. 食品工业科技,2020,41(21):29−36. [Wen P, Pei Z S, Zhu T T, et al. Preparation technology optimization of soluble dietary fiber and composition and structure characterization of monosaccharide from Clausena lansiu Sarcocarp[J]. Science and Technology of Food Industry,2020,41(21):29−36.
    [16] Wu F, Zhou C, Zhou D, et al. Structural characterization of a novel polysaccharide fraction from Hericium erinaceus and its signaling pathways involved in macrophage immunomodulatory activity[J]. Journal of Functional Foods,2017,37:574−585. doi:  10.1016/j.jff.2017.08.030
    [17] 吾哈丽妮萨·麦麦提托合提, 帕尔哈提·柔孜, 杨晓君, 等. 响应面优化马骨髓蛋白的提取工艺及其抗氧化活性研究[J]. 食品工业科技,2020,2020, 42(12):151−159. [Wugulnisa Mamattohti, Parhat Rozi, Yang X J, et al. Extraction technology optimization of horse bone marrow protein by response surface methodology and its antioxidant activity[J]. Science and Technology of Food Industry,2020,2020, 42(12):151−159.
    [18] 张艳荣, 卜佳莹, 杨小盈, 等. 玉米膳食纤维挤出功能化及粒度对其物性的影响研究[J]. 食品科学,2009,30(10):127−130. [Zhang Y R, Bu J Y, Yang X Y, et al. Extrusion functionalization of corn dietary fiber and effects of particle size on its physical properties[J]. Food Science,2009,30(10):127−130. doi:  10.3321/j.issn:1002-6630.2009.10.024
    [19] 赵梅. 枣渣膳食纤维酶法改性工艺及相关性质研究[D]. 无锡: 江南大学, 2014.

    Zhao M. Study on enzymatic modification and related properties of dietary fiber of jujube residue[D]. Wuxi: Jiangnan University, 2014.
    [20] 刘婷婷, 张传智, 浦静舒, 等. 双螺杆挤出工艺对米糠可溶性膳食纤维含量的影响[J]. 食品科学,2011,32(24):41−45. [Liu T T, Zhang C Z, Pu J S, et al. Effect of twin-screw extrusion conditions on soluble dietary fiber content of rice bran[J]. Food Science,2011,32(24):41−45.
    [21] Liu Y, Zhang H, Yi C, et al. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment[J]. Food Chemistry,2021:342.
    [22] 樊红秀. 高品质人参膳食纤维制取工艺优化及其功能特性的研究[D]. 长春: 吉林农业大学, 2013.

    Fan H X. Studies on the process optimiazion and funtional characteristics of high quality ginseng dietary fiber[D]. Changchun: Jilin Agricultural University, 2013.
    [23] Ma M, Mu T, Sun H, et al. Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.)[J]. Food Chemistry,2015,179(15):270−277.
    [24] 刘岩龙, 张彩丽, 黄萍萍, 等. 粒度对网纹瓜膳食纤维结构与性质的影响[J]. 食品研究与开发,2019,40(23):49−54. [Liu Y L, Zhang Y L, Huang P P, et al. Effect of grain size on structure and properties of dietary fiber from netted melon[J]. Food Research and Development,2019,40(23):49−54.
    [25] Zhu Y, He C, Fan H, et al. Modification of foxtail millet(Setaria italica)bran dietary fiber by xylanase-catalyzed hydrolysis improves its cholesterol-binding capacity[J]. Lebensmittel Wissenschaft Und Technologie,2019,101:463−468. doi:  10.1016/j.lwt.2018.11.052
    [26] 陈小举, 吴学凤, 姜绍通, 等. 响应面法优化半纤维素酶提取梨渣中可溶性膳食纤维工艺[J]. 食品科学,2015,36(6):18−23. [Chen X J, Wu X F, Jiang S T, et al. Applying response surface methodology to optimize extraction of soluble dietary fiber from pear residue using hemicellulase[J]. Food Science,2015,36(6):18−23. doi:  10.7506/spkx1002-6630-201506004
    [27] Liu Y, Zhang H, Yi C, et al. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment[J]. Food Chemistry,2020,342(1):128352.
    [28] Hu Y B, Wang Z, Xu S Y. Treatment of corn bran dietary fiber with xylanase increases its ability to bind bile salts, in vitro[J]. Food Chemistry,2008,106(1):113−121. doi:  10.1016/j.foodchem.2007.05.054
    [29] 黄六容, 陈甜, 赵匀淑, 等. 超声波改善大蒜秸秆不溶性膳食纤维结构及吸附性[J]. 农业工程学报,2018,34(12):294−299. [Huang L R, Chen T, Zhao Y S, et al. Improvement on structure and adsorption of insoluble dietary fiber from garlic straw induced by ultrasound[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(12):294−299. doi:  10.11975/j.issn.1002-6819.2018.12.037
    [30] Bender A B B, Speroni C S, Moro K I B, et al. Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate[J]. LWT,2020,117:108652. doi:  10.1016/j.lwt.2019.108652
    [31] Hua M, Lu J, Qu D, et al. Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: A potential functional ingredient[J]. Food Chemistry,2019,286:522−529. doi:  10.1016/j.foodchem.2019.01.114
    [32] 赵欣锐, 王秋阳, 杨晰茗, 等. 木聚糖酶改性红松松仁膜衣膳食纤维工艺优化及结构分析[J]. 东北农业科学,2019,44(5):111−115, 122. [Zhao X R, Wang Q Y, Yang X M, et al. Optimizing the preparation process of dietary fiber of pinus koraiensis nut coated-film modified by xylanase and analysis of its structure[J]. Journal of Northeast Agricultural Sciences,2019,44(5):111−115, 122.
    [33] Yan L, Li T, Liu C, et al. Effects of high hydrostatic pressure and superfine grinding treatment on physicochemical/functional properties of pear pomace and chemical composition of its soluble dietary fibre[J]. LWT,2019,107:171−177. doi:  10.1016/j.lwt.2019.03.019
    [34] Zhou K, Xia W, Zhang C, et al. In vitro binding of bile acids and triglycerides by selected chitosan preparations and their physico-chemical properties[J]. LWT-Food Science and Technology,2006,39(10):1087−1092. doi:  10.1016/j.lwt.2005.07.009
    [35] 胡叶碧. 改性玉米皮膳食纤维的酶法制备及其降血脂机理研究[D]. 无锡: 江南大学, 2008.

    Hu Y B. Preparation of modified corn bran dietary fiber by enzyme hydrolysis and its hypolipidemic mechanisms[D]. Wuxi: Jiangnan University, 2008.
    [36] Benitez V, Rebollo-Hernanz M, Hernanz S, et al. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization[J]. Food Research International,2019,122:105−113. doi:  10.1016/j.foodres.2019.04.002
  • 加载中
图(2) / 表(11)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  26
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-23
  • 网络出版日期:  2021-08-09
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。