重组酶聚合酶等温扩增技术在食源性致病菌检测中的应用

秦雪 付世骞 杨鑫焱 杨涛 高平聘 代晓斐 苗超 满朝新 姜毓君

秦雪,付世骞,杨鑫焱,等. 重组酶聚合酶等温扩增技术在食源性致病菌检测中的应用[J]. 食品工业科技,2021,42(20):449−455. doi:  10.13386/j.issn1002-0306.2020100136
引用本文: 秦雪,付世骞,杨鑫焱,等. 重组酶聚合酶等温扩增技术在食源性致病菌检测中的应用[J]. 食品工业科技,2021,42(20):449−455. doi:  10.13386/j.issn1002-0306.2020100136
QIN Xue, FU Shiqian, YANG Xinyan, et al. Application of Recombinase Polymerase Amplification in Detection of Foodborne Pathogen[J]. Science and Technology of Food Industry, 2021, 42(20): 449−455. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020100136
Citation: QIN Xue, FU Shiqian, YANG Xinyan, et al. Application of Recombinase Polymerase Amplification in Detection of Foodborne Pathogen[J]. Science and Technology of Food Industry, 2021, 42(20): 449−455. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020100136

重组酶聚合酶等温扩增技术在食源性致病菌检测中的应用

doi: 10.13386/j.issn1002-0306.2020100136
基金项目: 国家自然科学基金项目(31871828);国家重点研发计划项目(2018YFE0120500)。
详细信息
    作者简介:

    秦雪(1996−),女,硕士研究生,研究方向:乳品微生物,Email:2935866645@qq.com

    通讯作者:

    姜毓君(1971−),男,博士,教授,研究方向:食品科学,Email:yujun_jiang@163.com

  • 中图分类号: TS201.6

Application of Recombinase Polymerase Amplification in Detection of Foodborne Pathogen

  • 摘要: 食品安全是人类面对的重大问题,对食源性致病菌的检测也一直是各种研究关注的重点。基于聚合酶链式扩增(PCR)核酸检测方法虽然已克服传统微生物培养耗时长、准确度不高等缺点,成为目前应用最广的致病菌检测方法,但由于需要精确温度控制大大限制了其在现场检测中的应用。重组酶聚合酶等温扩增技术(RPA),作为一种新兴等温扩增技术,在近十年来发展迅速。该技术打破PCR的壁垒,弥补热循环、需要昂贵仪器等不足,更加适用于资源有限的现场检测。本文总结了重组酶聚合酶等温扩增(RPA)反应机理、引物及探针的设计方法,全面论述RPA在食源性致病菌检测中的应用,概述RPA发展的热点问题并对RPA技术未来发展方向进行展望。
  • 图  1  RPA反应原理

    Figure  1.  Principle of RPA

    图  2  Exo探针用于RT-RPA原理图[33]

    Figure  2.  Principle of Exo probe for RT-RPA[33]

    图  3  RPA-LFD检测原理图

    Figure  3.  Principle of RPA-LFD

    图  4  RPA-化学发光检测原理图[39]

    Figure  4.  Principle of RPA-Chemiluminescence detection[39]

    图  5  RPA-电化学检测原理图[41]

    Figure  5.  Principle of RPA-electrochemical detection[41]

    表  1  RPA与其他核酸扩增技术比较

    Table  1.   Comparison of RPA and other nucleic acid amplification methods

    方法引物
    数目
    酶数量反应时间
    (min)
    反应温度
    (℃)
    灵敏度(CFU/mL)文献来源
    PCR2190热循环4.8×10[15]
    LAMP4~6160652.82[16-17]
    NASBA22~3180375×10[18]
    SDA4230377.0×102[19]
    RCA1360372[20]
    HDA2290657.8×10[21]
    RPA235~2037~421.95[22]
    下载: 导出CSV
  • [1] 周辉. 我国食品安全法律制度探析——评《食品安全法律控制研究》[J]. 中国酿造,2019,38(8):239. [Zhou H. Chinese food safety legal system analysis and evaluation of food safety legal control research[J]. China Brewing,2019,38(8):239.
    [2] Renner L D, Zan J, Hu L I, et al. Detection of ESKAPE bacterial pathogens at the point of care using isothermal DNA-based assays in a portable degas-actuated microfluidic diagnostic assay platform[J]. Applied Environmental Microbiology,2017,83(4):e02449−16.
    [3] 食品伙伴网, http://www.foodmate.net/special/anquan/314.html[EB/OL].

    Food Partners, http://www.foodmate.net/special/anquan/314.html[EB/OL].
    [4] 食品伙伴网, http://news.foodmate.net/2018/03/462219.html[EB/OL].

    Food Partners, http://news.foodmate.net/2018/03/462219.html[EB/OL].
    [5] 食品伙伴网, http://news.foodmate.net/2018/05/467058.html[EB/OL].

    Food Partners, http://news.foodmate.net/2018/05/467058.html[EB/OL].
    [6] Tack D, Ray L, Griffin P, et al. Preliminary incidence and trends of infections with pathogens transmitted commonly through food-foodborne diseases active surveillance network, 10 U. S. sites, 2016-2019[J]. MMWR. Morbidity Mortality Weekly Report,2020,69(17):509−514. doi:  10.15585/mmwr.mm6917a1
    [7] Mansfield L P, Forsythe S J J F M. The detection of Salmonella serovars from animal feed and raw chicken using a combined immunomagnetic separation and ELISA method[J]. Food Microbiology,2001,18(4):361−366. doi:  10.1006/fmic.2001.0416
    [8] 李宏, 付冠艳, 付淑君, 等. 胶体金免疫层析技术在食源性致病菌快速检测中的应用[J]. 食品与机械,2013,29(3):261−264. [Li H, Fu G Y, Fu S J, et al. Application of colloidal gold immunochromatography in rapid detection of foodborne pathogens[J]. Food & Machinery,2013,29(3):261−264. doi:  10.3969/j.issn.1003-5788.2013.03.064
    [9] Zhao Y, Zeng D, Yan C, et al. Rapid and accurate detection of Escherichia coli O157: H7 in beef using microfluidic wax-printed paper-based ELISA[J]. The Analyst,2020,145(8):3106−3115. doi:  10.1039/D0AN00224K
    [10] Ting L, Kun Y. Application of isothermal amplification technology for pathogen detection in parasitic and other diseases[J]. Chinese Journal of Schistosomiasis Control,2018,30(2):232−236.
    [11] Piepenburg O, Williams C H, Stemple D L, et al. DNA detection using recombination proteins[J]. PLoS Biology,2006,4(7):1115−1121.
    [12] Li J, Macdonald J, Von Stetten F. Review: A comprehensive summary of a decade development of the recombinase polymerase amplification[J]. The Analyst,2018,144(1):31−67.
    [13] Crannell Z A, Rohrman B, Richards-Kortum R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat[J]. PLoS One,2014:e112146.
    [14] Deng H, Gao Z J a C A. Bioanalytical applications of isothermal nucleic acid amplification techniques[J]. Analytica Chimica Acta,2015,853:30−45. doi:  10.1016/j.aca.2014.09.037
    [15] Zhan Z, Liu J, Yan L, et al. Sensitive fluorescent detection of Listeria monocytogenes by combining a universal asymmetric polymerase chain reaction with rolling circle amplification[J]. Journal of Pharmaceutical Biomedical Analysis,2019,169:181−187. doi:  10.1016/j.jpba.2019.03.016
    [16] Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research,2000,28(12):E63. doi:  10.1093/nar/28.12.e63
    [17] Wachiralurpan S, Sriyapai T, Areekit S, et al. Development of a rapid screening test for Listeria monocytogenes in raw chicken meat using loop-mediated isothermal amplification (LAMP) and lateral flow dipstick (LFD)[J]. Food Analytical Methods,2017,10:3763−3772. doi:  10.1007/s12161-017-0949-4
    [18] Fykse E M, Skogan G, Davies W, et al. Detection of Vibrio cholerae by real-time nucleic acid sequence-based amplification[J]. Applied Environmental Microbiology,2007,73(5):1457. doi:  10.1128/AEM.01635-06
    [19] 梁炜, 尼秀媚, 雷质文, 等. 霍乱弧菌SDA-琼脂糖凝胶电泳检测技术研究[J]. 食品安全质量检测学报,2011,2(3):47−51. [Liang W, Ni X M, Lei Z W, et al. Study on detection of Vibrio cholerae by SDA-agarose gel electrophoresis[J]. Journal of Food Safety and Quality,2011,2(3):47−51.
    [20] Teng J, Ye Y, Yao L, et al. Rolling circle amplification based amperometric aptamer/immuno hybrid biosensor for ultrasensitive detection of Vibrio parahaemolyticus[J]. Microchimica Acta,2017,184:3477−3485. doi:  10.1007/s00604-017-2383-0
    [21] 王建广, 雷质文, 石琰璟, 等. 单核细胞增生李斯特氏菌依赖解旋酶DNA恒温扩增检测方法的建立[J]. 中国预防兽医学报,2011(2):130−132. [Wang J G, Lei Z W, Shi Y J, et al. Establishment of the detection method of Listeria monocytogenes by DNA isothermal amplification based on helicase[J]. Chinese Journal of Preventive Veterinary Medicine,2011(2):130−132. doi:  10.3969/j.issn.1008-0589.2011.02.12
    [22] Hu J, Huang R, Sun Y, et al. Sensitive and rapid visual detection of Salmonella typhimurium in milk based on recombinase polymerase amplification with lateral flow dipsticks[J]. Journal of Microbiological Methods,2019,158:25−32. doi:  10.1016/j.mimet.2019.01.018
    [23] Jiali, Joannemacdonald, Stetten F. Review: A comprehensive summary of a decade development of the recombinase polymerase amplification[J]. Analyst,2019:144.
    [24] Fuller S, Savory E, Weisberg A, et al. Isothermal amplification and lateral-flow assay for detecting crown-gall-causing Agrobacterium spp.[J]. Phytopathology,2017,107(9):1062−1068. doi:  10.1094/PHYTO-04-17-0144-R
    [25] Martorell S, Palanca S, Maquieira Á, et al. Blocked recombinase polymerase amplification for mutation analysis of PIK3CA gene[J]. Analytical Biochemistry,2018,544:49−56. doi:  10.1016/j.ab.2017.12.013
    [26] 兰海鸥, 柯义强, 马咸莹, 等. 重组酶聚合酶等温扩增技术在食品安全检测领域的应用[J]. 食品与发酵工业,2019,45(14):233−238. [Lan H O, Ke Y Q, Ma X Y, et al. Application of recombinase polymerase amplification in food safety detection field[J]. Food and Fermentation Industry,2019,45(14):233−238.
    [27] RPA assay design[EB/OL].https: //www.twistdx.co.uk/en/support/rpa-assay-design-2 (accessed Oct 4th, 2018).
    [28] Wang J C, Liu L B, Han Q A, et al. An exo probe-based recombinase polymerase amplification assay for the rapid detection of porcine parvovirus[J]. Journal of Virological Methods,2017,248:145−147. doi:  10.1016/j.jviromet.2017.06.011
    [29] Xia X, Yu Y, Weidmann M, et al. Rapid detection of shrimp white spot syndrome virus by real time, isothermal recombinase polymerase amplification assay[J]. PLoS One,2014,9(8):e104667−e104667. doi:  10.1371/journal.pone.0104667
    [30] 王金凤, 刘立兵, 耿云云, 等. 单核细胞增生李斯特氏菌实时荧光RPA检测方法的建立及应用[J]. 现代食品科技,2018,34(8):213−218, 98. [Wang J F, Liu L B, Geng Y Y, et al. Establishment and application of real-time fluorescence RPA detection method for Listeria monocytogenes[J]. Modern Food Science and Technology,2018,34(8):213−218, 98.
    [31] Liu S, Geng Y, Liu L, et al. Development of an isothermal amplification-based assay for the rapid detection of Cronobacter spp.[J]. Journal of Dairy Science,2018,101(6):4914−4922. doi:  10.3168/jds.2017-13931
    [32] Geng Y, Liu G, Liu L, et al. Real-time recombinase polymerase amplification assay for the rapid and sensitive detection of Campylobacter jejuni in food samples[J]. Journal of Microbiological Methods,2019,157:31−36. doi:  10.1016/j.mimet.2018.12.017
    [33] Lobato I M, Osullivan C K J T I a C. Recombinase polymerase amplification: Basics, applications and recent advances[J]. Trends in Analytical Chemistry,2018,98:19−35. doi:  10.1016/j.trac.2017.10.015
    [34] Liu H, Zang Y, Du X, et al. Development of an isothermal amplification-based assay for the rapid visual detection of Salmonella bacteria[J]. Journal of Dairy Science,2017,100(9):7016−7025. doi:  10.3168/jds.2017-12566
    [35] Xu Y, Wei Y, Cheng N, et al. Nucleic acid biosensor synthesis of an all-in-one universal blocking linker recombinase polymerase amplification with a peptide nucleic acid-based lateral flow device for ultrasensitive detection of food pathogens[J]. Analytical Chemistry,2018,90(1):708−715. doi:  10.1021/acs.analchem.7b01912
    [36] 高建欣, 藏雨轩, 杜欣军, 等. 重组酶聚合酶恒温扩增结合乳胶微球试纸条快速检测金黄色葡萄球菌[J]. 食品研究与开发,2019,40(1):177−181. [Gao J X, Zang Y X, Du X J, et al. Rapid detection of Staphylococcus aureus by recombinase polymerase amplification combined with latex microsphere strip[J]. Food Research and Development,2019,40(1):177−181.
    [37] Hu J, Wang Y, Su H, et al. Rapid analysis of Escherichia coli O157: H7 using isothermal recombinase polymerase amplification combined with triple-labeled nucleotide probes[J]. Molecular Cellular Probes,2020,50:101501. doi:  10.1016/j.mcp.2019.101501
    [38] Wang L, Zhao P, Si X, et al. Rapid and specific detection of Listeria monocytogenes with an isothermal amplification and lateral flow strip combined method that eliminates false-positive signals from primer-dimers[J]. Frontiers in Microbiology,2020:10.
    [39] Kunze A, Dilcher M, Abd El Wahed A, et al. On-chip isothermal nucleic acid amplification on flow-based chemiluminescence microarray analysis platform for the detection of viruses and bacteria[J]. Analytical Chemistry,2016,88(1):898−905. doi:  10.1021/acs.analchem.5b03540
    [40] Jonas B, CatharinaK, Verena K M, et al. Succinylated jeffamine ED-2003 coated polycarbonate chips for low-cost analytical microarrays[J]. Analytical Bioanalytical Chemistry,2019,411(10):1943−1955. doi:  10.1007/s00216-019-01594-8
    [41] Del Río J, Yehia Adly N, Acero-Sánchez J, et al. Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification[J]. Biosensors Bioelectronics,2014,54:674−678. doi:  10.1016/j.bios.2013.11.035
    [42] Nakano M, Kalsi S, Morgan H J B, et al. Fast and sensitive isothermal DNA assay using microbead dielectrophoresis for detection of anti-microbial resistance genes[J]. Biosensors Bioelectronics,2018,117:583−589. doi:  10.1016/j.bios.2018.06.063
    [43] Toldrà A, Furones M, O'sullivan C, et al. Detection of isothermally amplified ostreid herpesvirus 1 DNA in Pacific oyster (Crassostrea gigas) using a miniaturised electrochemical biosensor[J]. Talanta,2020,207:120308. doi:  10.1016/j.talanta.2019.120308
    [44] Schuler F, Schwemmer F, Trotter M, et al. Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA[J]. Lab on a Chip,2015,15(13):2759−66. doi:  10.1039/C5LC00291E
    [45] Tsaloglou M, Watson R, Rushworth C, et al. Real-time microfluidic recombinase polymerase amplification for the toxin B gene of Clostridium difficile on a slipchip platform[J]. The Analyst,2015,140(1):258−64. doi:  10.1039/C4AN01683A
    [46] Shen F, Davydova E, Du W, et al. Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on slipchip[J]. Analytical Chemistry,2011,83(9):3533−40. doi:  10.1021/ac200247e
    [47] Yin J, Zou Z, Hu Z, et al. A "sample-in-multiplex-digital-answer-out" chip for fast detection of pathogens[J]. Lab on a Chip,2020,20(5):979−986. doi:  10.1039/C9LC01143A
    [48] Santiago-Felipe S, Tortajada-Genaro L A, Morais S, et al. Isothermal DNA amplification strategies for duplex microorganism detection[J]. Food Chemistry,2015,174:509−515. doi:  10.1016/j.foodchem.2014.11.080
    [49] Chen J G, Xu Y C, Yan H, et al. Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification [J]. Lab on a Chip, 2018, 18 (2): 2441-2452.
    [50] Choi G, Jung J H, Park B H, et al. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria[J]. Lab on a Chip,2016,16(12):2309−2316. doi:  10.1039/C6LC00329J
    [51] Oordt T V, Strohmeier O, Mark D, et al. The labdisk-A fully automated centrifugal lab-on-a-chip system for the detection of biological threats[C]// Berlin: Future Security Research Conference, 2012.
    [52] Kim T H, Park J, Kim C J, et al. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens[J]. Analytical Chemistry,2014,86(8):3841−3848. doi:  10.1021/ac403971h
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  26
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-20
  • 网络出版日期:  2021-09-02
  • 刊出日期:  2021-10-11

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升