肌肉蛋白乳化特性改善方法研究进展

李丽湲 赵雪 徐幸莲

李丽湲,赵雪,徐幸莲. 肌肉蛋白乳化特性改善方法研究进展[J]. 食品工业科技,2021,42(20):424−430. doi:  10.13386/j.issn1002-0306.2020090095
引用本文: 李丽湲,赵雪,徐幸莲. 肌肉蛋白乳化特性改善方法研究进展[J]. 食品工业科技,2021,42(20):424−430. doi:  10.13386/j.issn1002-0306.2020090095
LI Liyuan, ZHAO Xue, XU Xinglian. Recent Progress on the Methods of Improvement on Emulsifying Properties of Meat Protein[J]. Science and Technology of Food Industry, 2021, 42(20): 424−430. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020090095
Citation: LI Liyuan, ZHAO Xue, XU Xinglian. Recent Progress on the Methods of Improvement on Emulsifying Properties of Meat Protein[J]. Science and Technology of Food Industry, 2021, 42(20): 424−430. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020090095

肌肉蛋白乳化特性改善方法研究进展

doi: 10.13386/j.issn1002-0306.2020090095
基金项目: 国家自然科学基金(31972097)
详细信息
    作者简介:

    李丽湲(1996−),女,硕士研究生,研究方向:肉品加工及质量安全控制,E-mail:2019108054@njau.edu.cn

    通讯作者:

    徐幸莲(1962−),女,博士,教授,研究方向:肉品加工及质量安全控制,E-mail:xlxus@njau.edu.cn

  • 中图分类号: TS251.1

Recent Progress on the Methods of Improvement on Emulsifying Properties of Meat Protein

  • 摘要: 乳化特性是肌肉蛋白的重要功能特性之一,对加工肉制品的品质和价值有关键性影响。肌肉蛋白的溶解度、尺寸大小、巯基分布以及表面疏水性等自身特性共同决定其乳化能力,而不同物化修饰方法能够通过改变蛋白上述结构与聚集程度,从而提高蛋白质乳化特性。本文系统综述了改善肌肉蛋白乳化特性的几种方法,包括高压均质、高静压、超声波、微波和等离子体技术等物理手段以及糖基化修饰和酸碱处理等化学手段,同时论述了不同方法改善蛋白乳化特性的机制及适宜处理条件,以期为肌肉蛋白乳化特性的提升以及乳化类肉制品的开发应用提供技术支持。
  • [1] Lam R S H, Nickerson M T. Food proteins: A review on their emulsifying properties using a structure-function approach[J]. Food Chemistry,2013,141(2):975−984. doi:  10.1016/j.foodchem.2013.04.038
    [2] Abdollahi M, Undeland I. Structural, functional, and sensorial properties of protein isolate produced from salmon, cod, and herring by-products[J]. Food and Bioprocess Technology,2018,11(9):1733−1749. doi:  10.1007/s11947-018-2138-x
    [3] 胡爱军, 卢秀丽, 郑捷, 等. 不同处理方式对鲢鱼鱼肉蛋白乳化性的影响[J]. 食品科学技术学报,2013,31(3):13−16. [Hu A J, Lu X L, Zheng J, et al. Effects of different treatments on emulsification of silver carp protein[J]. Journal of Food Science and Technology,2013,31(3):13−16. doi:  10.3969/j.issn.2095-6002.2013.03.004
    [4] 常娅妮, 马俪珍, 杨梅, 等. 不同冷冻方式对调味鱼贮藏期间肌原纤维蛋白的影响[J]. 肉类研究,2019,33(10):63−68. [Chang N Y, Ma L Z, Yang M, et al. Effects of different freezing methods on myofibrillar proteins from prepared fish products during storage[J]. Meat Research,2019,33(10):63−68.
    [5] 刘雯燕. 亚麻籽胶对糜类肉制品乳化凝胶特性的影响[D]. 南京: 南京农业大学, 2018.

    Liu W Y. Effect of flaxseed gum on the emulsified and gelling properties of minced meat products[D]. Nanjing: Nanjing Agricultural University, 2018.
    [6] Wolfer T L, Acevedo N C, Prusa K J, et al. Replacement of pork fat in frankfurter-type sausages by soybean oil oleogels structured with rice bran wax[J]. Meat Science,2018,145:352−362. doi:  10.1016/j.meatsci.2018.07.012
    [7] Kilic B, Ozer C O. Potential use of interesterified palm kernel oil to replace animal fat in frankfurters[J]. Meat Science,2019,148:206−212. doi:  10.1016/j.meatsci.2018.08.024
    [8] Chan J T Y, Omana D A, Betti M. Application of high pressure processing to improve the functional properties of pale, soft, and exudative (PSE)-like turkey meat[J]. Innovative Food Science & Emerging Technologies,2011,12(3):216−225.
    [9] Arzeni C, Martinez K, Zema P, et al. Comparative study of high intensity ultrasound effects on food proteins functionality[J]. Journal of Food Engineering,2012,108(3):463−472. doi:  10.1016/j.jfoodeng.2011.08.018
    [10] Xu Y J, Zhao X, Bian G L, et al. Structural and solubility properties of pale, soft and exudative(PSE)-like chicken breast myofibrillar protein: Effect of glycosylation[J]. LWT-Food Science and Technology,2018,95:209−215. doi:  10.1016/j.lwt.2018.04.051
    [11] Zhao X, Bai Y, Xing T, et al. Use of an isoelectric solubilization/precipitation process to modify the functional properties of PSE(pale, soft, exudative)-like chicken meat protein: A mechanistic approach[J]. Food Chemistry,2018,248:201−209. doi:  10.1016/j.foodchem.2017.12.048
    [12] Gordon A, Barbut S. Effect of chemical modifications on the microstructure of raw meat batters[J]. Food Structure,1991,10(3):241−253.
    [13] Jones K W, Mandigo R W. Effects of chopping temperature on the microstructure of meat emulsions[J]. Journal of Food Science,1982,47:1930−1935. doi:  10.1111/j.1365-2621.1982.tb12916.x
    [14] 汪张贵, 闫利萍, 彭增起, 等. 脂肪剪切乳化和蛋白基质对肉糜乳化稳定性的重要作用[J]. 食品工业科技,2011,32(8):466−469. [Wang Z G, Yan L P, Peng Z Q, et al. Importance of shearing fat emulsification and protein matrix in meat batter stability[J]. Science and Technology of Food Industry,2011,32(8):466−469.
    [15] 孙迪. 不同脂肪对肌原纤维蛋白乳化液稳定性及肉糜凝胶特性的影响[D]. 锦州: 渤海大学, 2019.

    Sun D. Effects of fats on the stability of myofibrillar protein emulsions and gel properties of meat batters[D]. Jinzhou: Bohai University, 2019.
    [16] Li L Y, Cai R Y, Wang P, et al. Manipulating interfacial behavior and emulsifying properties of myosin through alkali-heat treatment[J]. Food Hydrocolloids,2018,85:69−74. doi:  10.1016/j.foodhyd.2018.06.044
    [17] 李儒仁, 杨鹏, 荣良燕, 等. Chaotropic离子对肌球蛋白乳化特性影响的研究进展[J]. 肉类研究,2018,32(9):47−54. [Li R R, Yang P, Rong L Y, et al. Recent advances in understanding the effect of chaotropic ions on emulsifying properties of myofibrillar proteins[J]. Meat Research,2018,32(9):47−54.
    [18] Kevin N. P, John E. K. Emulsifying properties of proteins: evaluation of a turbidimetric technique[J]. Journal of Agricultural and Food Chemistry,1978,26(3):716−723. doi:  10.1021/jf60217a041
    [19] Sun Y J, Chen J H, Zhang S W, et al. Effect of power ultrasound pre-treatment on the physical and functional properties of reconstituted milk protein concentrate[J]. Journal of Food Engineering,2014,124:11−18. doi:  10.1016/j.jfoodeng.2013.09.013
    [20] Tang S, Hettiarachchy N S, Horax R, et al. Physicochemical properties and functionality of rice bran protein hydrolyzate prepared from heat-stabilized defatted rice bran with the aid of enzymes[J]. Journal of Food Science,2003,68(1):6.
    [21] 闫海鹏, 吴菊清, 李美琳, 等. 不同种类肉肌原纤维蛋白乳化及理化特性的研究[J]. 南京农业大学学报,2013,36(6):100−104. [Yan H P, Wu J Q, Li M L, et al. Research on the emulsifying and physicochemical characteristics of myofibrillar protein from several species meat[J]. Journal of Nanjing Agricultural University,2013,36(6):100−104. doi:  10.7685/j.issn.1000-2030.2013.06.016
    [22] 杜菲菲, 吴长玲, 方艾虎, 等. 不同种类肉肌浆蛋白的油-水界面性质[J]. 食品科学,2020,41(4):15−22. [Du F F, Wu C L, Fang A H, et al. Oil-water interfacial properties of sarcoplasmic proteins in meat from different animal species[J]. Food Science,2020,41(4):15−22. doi:  10.7506/spkx1002-6630-20181022-229
    [23] Niu H, Xia X F, Wang C, et al. Thermal stability and gel quality of myofibrillar protein as affected by soy protein isolates subjected to an acidic pH and mild heating[J]. Food Chemistry,2018,242:188−195. doi:  10.1016/j.foodchem.2017.09.055
    [24] Sun Q X, Zhang C, Li Q X, et al. Changes in functional properties of common carp (Cyprinus carpio) myofibrillar protein as affected by ultrasound-assisted freezing[J]. Journal of Food Science,2020,85(9):2879−2888. doi:  10.1111/1750-3841.15386
    [25] Tadpitchayangkoon P, Park J W, Yongsawatdigul J. Conformational changes and dynamic rheological properties of fish sarcoplasmic proteins treated at various pHs[J]. Food Chemistry,2010,121(4):1046−1052. doi:  10.1016/j.foodchem.2010.01.046
    [26] 王瑛. pH值调节诱导罗非鱼肌球蛋白结构和性质的变化[D]. 湛江: 广东海洋大学, 2013.

    Wang Y. pH-shifting induced changes in the structure and properties of myosin from tilapia[D]. Zhanjiang: Guangdong Ocean University, 2013.
    [27] 吴菊清, 邵俊花, 魏朝贵, 等. 离子强度对猪肉肌原纤维蛋白乳化特性和理化特性的影响[J]. 食品科学,2014,35(23):14−19. [Wu J Q, Shao J H, Wei C G, et al. Effects of ionic strength on emulsifying and physico-chemical properties of pork myofibrillar protein[J]. Food Science,2014,35(23):14−19. doi:  10.7506/spkx1002-6630-201423003
    [28] Vera V, Valenzuela M A, Yazdani-Pedram M, et al. Conformational and physicochemical properties of quinoa proteins affected by different conditions of high-intensity ultrasound treatments[J]. Ultrasonics Sonochemistry,2019,51:186−196. doi:  10.1016/j.ultsonch.2018.10.026
    [29] Cha Y, Shi X J, Wu F, et al. Improving the stability of oil-in-water emulsions by using mussel myofibrillar proteins and lecithin as emulsifiers and high-pressure homogenization[J]. Journal of Food Engineering,2019,258:1−8. doi:  10.1016/j.jfoodeng.2019.04.009
    [30] Wang H N, Wu J P, Betti M. Chemical, rheological and surface morphologic characterization of spent hen proteins extracted by pH-shift processing with or without the presence of cryoprotectants[J]. Food Chemistry,2013,139(1-4):710−719. doi:  10.1016/j.foodchem.2013.01.123
    [31] Wu M G, Xiong Y L, Chen J. Role of disulphide linkages between protein-coated lipid droplets and the protein matrix in the rheological properties of porcine myofibrillar protein-peanut oil emulsion composite gels[J]. Meat Science,2011,88(3):384−390. doi:  10.1016/j.meatsci.2011.01.014
    [32] 邵俊花, 吴菊青, 周光宏, 等. 巯基和疏水性对蛋白质乳化及凝胶特性的影响[J]. 食品科学,2013,34(23):155−159. [Shao J H, Wu J Q, Zhou G H, et al. Effects of sulfhydryl content and hydrophobicity on gel and emulsifying properties of pork proteins[J]. Food Science,2013,34(23):155−159.
    [33] Mahmoudi N, Axelos M A V, Riaublanc A. Interfacial properties of fractal and spherical whey protein aggregates[J]. Soft Matter,2011,7(17):7643−7654. doi:  10.1039/c1sm05262d
    [34] Chen X, Xu X L, Zhou G H. Potential of high pressure homogenization to solubilize chicken breast myofibrillar proteins in water[J]. Innovative Food Science & Emerging Technologies,2016,33:170−179.
    [35] Villay A, De Filippis F L, Picton L, et al. Comparison of polysaccharide degradations by dynamic high-pressure homogenization[J]. Food Hydrocolloids,2012,27(2):278−286. doi:  10.1016/j.foodhyd.2011.10.003
    [36] Saricaoglu F T, Gul O, Tural S, et al. Potential application of high pressure homogenization(HPH) for improving functional and rheological properties of mechanically deboned chicken meat (MDCM) proteins[J]. Journal of Food Engineering,2017,215:161−171. doi:  10.1016/j.jfoodeng.2017.07.029
    [37] Chen X, Xu X L, Han M Y, et al. Conformational changes induced by high-pressure homogenization inhibit myosin filament formation in low ionic strength solutions[J]. Food Research International,2016,85:1−9. doi:  10.1016/j.foodres.2016.04.011
    [38] 李雨枫, 薛思雯, 衣晓坤, 等. 高压均质处理对不同浓度肌原纤维蛋白水悬液理化特性及蛋白结构的影响[J]. 食品工业科技,2019,40(21):1−6. [Li Y F, Xue S W, Yi X K, et al. Effects of high pressure homogenization on physicochemical properties and protein structure of myofibrillar protein aqueous suspensions with different concentrations[J]. Science and Technology of Food Industry,2019,40(21):1−6.
    [39] Lv M C, Zhang H, Mei K L, et al. Effects of high pressure on myofibrillar protein and moisture distribution of shrimp(Solenocera melantho) muscle[J]. Journal of Aquatic Food Product Technology,2020,29(3):220−228. doi:  10.1080/10498850.2020.1718818
    [40] Knorr D, Heinz V, Buckow R. High pressure application for food biopolymers[J]. Biochimica et Biophysica Acta-Proteins and Proteomics,2006,1764(3):619−631. doi:  10.1016/j.bbapap.2006.01.017
    [41] Perez-Andres J M, Charoux C M G, Cullen P J, et al. Chemical modifications of lipids and proteins by non-thermal food processing technologies[J]. Journal of Agricultural and Food Chemistry,2018,66(20):5041−5054. doi:  10.1021/acs.jafc.7b06055
    [42] Li G S, Chen Y T, Xuan S F, et al. Rheological properties and structure of myofibrillar protein extracted from Oratosquilla oratoria muscle as affected by ultra-high pressure[J]. International Journal of Food Properties,2019,22(1):1310−1321. doi:  10.1080/10942912.2019.1642915
    [43] 才卫川, 张坤生, 任云霞. 超高压处理对鸡胸肉中盐溶蛋白功能性质的影响[J]. 浙江农业学报,2015,27(4):642−646. [Cai W C, Zhang K S, Ren Y X. Effect of ultra high pressure on the functional properties of salt soluble proteins of chicken breast[J]. Acta Agriculturae Zhejiangensis,2015,27(4):642−646. doi:  10.3969/j.issn.1004-1524.2015.04.22
    [44] Awad T S, Moharram H A, Shaltout O E, et al. Application of ultrasound in analysis, processing and quality control of food: A review[J]. Food Research International,2012,48(2):410−427. doi:  10.1016/j.foodres.2012.05.004
    [45] Soria A C, Villamiel M. Effect of ultrasound on the technological properties and bioactivity of food: A review[J]. Trends in Food Science & Technology,2010,21(7):323−331.
    [46] Li K, Fu L, Zhao Y Y, et al. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion[J]. Food Hydrocolloids,2020,98:105275. doi:  10.1016/j.foodhyd.2019.105275
    [47] Amiri A, Sharifian P, Soltanizadeh N. Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins[J]. International Journal of Biological Macromolecules,2018,111:139−147. doi:  10.1016/j.ijbiomac.2017.12.167
    [48] Zou Y, Xu P P, Wu H H, et al. Effect of different ultrasound power on physicochemical property and functional performance of chicken actomyosin[J]. International Journal of Biological Macromolecules,2018,113:640−647. doi:  10.1016/j.ijbiomac.2018.02.039
    [49] 陈卫, 范大明, 马申焉, 等. 微波对蛋白质及其衍生物结构和功能的影响[J]. 食品与生物技术学报,2012,31(3):1673−1689. [Chen W, Fan D M, Ma S Y, et al. Effect of microwave on the structure and functions of the protein and its derivatives[J]. Journal of Food Science and Biotechnology,2012,31(3):1673−1689.
    [50] 李瑞平. 微波场内草鱼鱼肉蛋白营养和结构性质的研究[D]. 南昌: 南昌大学, 2015.

    Li R P. The research of grass carp meat protein on the nutrition and structure properties in a microwave field[D]. Nanchang: Nanchang University, 2015.
    [51] Mir S A, Shah M A, Mir M M. Understanding the role of plasma technology in food industry[J]. Food and Bioprocess Technology,2016,9(5):734−750. doi:  10.1007/s11947-016-1699-9
    [52] 张晔, 刘志伟, 谭兴和, 等. 冷等离子体食品杀菌应用研究进展[J]. 中国酿造,2019,38(1):20−24. [Zhang Y, Liu Z W, Tan X H, et al. Research progress of cold plasma application in food sterilization[J]. China Brewing,2019,38(1):20−24. doi:  10.11882/j.issn.0254-5071.2019.01.005
    [53] Ekezie F G C, Cheng J H, Sun D W. Effects of atmospheric pressure plasma jet on the conformation and physicochemical properties of myofibrillar proteins from king prawn[J]. Food Chemistry,2019,276:147−156. doi:  10.1016/j.foodchem.2018.09.113
    [54] Ekezie F G C, Cheng J H, Sun D W. Effects of mild oxidative and structural modifications induced by argon-plasma on physicochemical properties of actomyosin from king prawn (Litopenaeus vannamei)[J]. Journal of Agricultural and Food Chemistry,2018,66(50):13285−13294. doi:  10.1021/acs.jafc.8b05178
    [55] Zhang Q, Li L, Lan Q Y, et al. Protein glycosylation: A promising way to modify the functional properties and extend the application in food system[J]. Critical Reviews in Food Science & Nutrition,2019,59(15):2506−2533.
    [56] Liu J H, Xu Q H, Zhang J J, et al. Characterization of silver carp(Hypophthalmichthys molitrix)myosin protein glycated with konjac oligo-glucomannan[J]. Food Hydrocolloids,2016,57:114−121. doi:  10.1016/j.foodhyd.2016.01.019
    [57] Jimenez-Castano L, Villamiel M, Lopez-Fandino R. Glycosylation of individual whey proteins by maillard reaction using dextran of different molecular mass[J]. Food Hydrocolloids,2007,21(3):433−443. doi:  10.1016/j.foodhyd.2006.05.006
    [58] Xu Y J, Dong M, Tang C B, et al. Glycation-induced structural modification of myofibrillar protein and its relation to emulsifying properties[J]. LWT-Food Science and Technology,2020,117:108664. doi:  10.1016/j.lwt.2019.108664
    [59] 陈欣. 罗非鱼肉肌原纤维蛋白糖基化改性研究[D]. 湛江: 广东海洋大学, 2010.

    Chen X. Studies on glycosylation modification of tilapia myofibrillar protein[D]. Zhanjiang: Guangdong Ocean University, 2010.
    [60] Liu J H, Luo Y H, Gu S Q, et al. Physicochemical, conformational and functional properties of silver carp myosin glycated with konjac oligo-glucomannan: implications for structure-function relationships[J]. Food Hydrocolloids,2017,72:136−144. doi:  10.1016/j.foodhyd.2017.05.040
    [61] Sun L C, Lin Y C, Liu W F, et al. Effects of pH shifting on conformation and gelation properties of myosin from skeletal muscle of blue round scads (Decapterus maruadsi)[J]. Food Hydroco-lloids,2019,93:137−145. doi:  10.1016/j.foodhyd.2019.02.026
    [62] Kristinsson H G, Hultin H O. Effect of low and high pH treatment on the functional properties of cod muscle proteins[J]. Journal of Agricultural and Food Chemistry,2003,51(17):5103−5110. doi:  10.1021/jf026138d
    [63] Surasani V K R. Acid and alkaline solubilization(pH shift)process: a better approach for the utilization of fish processing waste and by-products[J]. Environmental Science and Pollution Research,2018,25(19):18345−18363. doi:  10.1007/s11356-018-2319-1
    [64] 高健, 李祥鹏, 石彦国, 等. 蛋白质熔球态结构的形成及其加工特性研究进展[J]. 食品工业科技,2019,40(9):351−356. [Gao J, Li X P, Shi Y G, et al. Research progress on the formation and processing characteristics of molten globule structure protein[J]. Science and Technology of Food Industry,2019,40(9):351−356.
    [65] Hrynets Y, Omana D A, Xu Yan, et al. Effect of acid- and alkaline-aided extractions on functional and rheological properties of proteins recovered from mechanically separated turkey meat (MSTM)[J]. Journal of Food Science,2010,75(7):E477−E486. doi:  10.1111/j.1750-3841.2010.01736.x
    [66] Abreu A D S, Souza M M D, Rocha M D, et al. Functional properties of white shrimp (Litopenaeus vannamei) by-products protein recovered by isoelectric solubilization/precipitation[J]. Journal of Aquatic Food Product Technology,2019,28(6):649−657. doi:  10.1080/10498850.2019.1628151
    [67] Zhao X, Wu T, Xing T, et al. Rheological and physical properties of O/W protein emulsions stabilized by isoelectric solubilization/precipitation isolated protein: The underlying effects of varying protein concentrations[J]. Food Hydrocolloids,2019,95:580−589. doi:  10.1016/j.foodhyd.2018.03.040
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  26
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 网络出版日期:  2021-09-02
  • 刊出日期:  2021-10-11

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升