表面增强拉曼光谱在乳和乳品有害物质检测中的研究进展

桑潘婷 郭亚辉 张倩瑶 成玉梁 于航 谢云飞 姚卫蓉 钱和

桑潘婷,郭亚辉,张倩瑶,等. 表面增强拉曼光谱在乳和乳品有害物质检测中的研究进展[J]. 食品工业科技,2021,42(20):417−425. doi:  10.13386/j.issn1002-0306.2020090087
引用本文: 桑潘婷,郭亚辉,张倩瑶,等. 表面增强拉曼光谱在乳和乳品有害物质检测中的研究进展[J]. 食品工业科技,2021,42(20):417−425. doi:  10.13386/j.issn1002-0306.2020090087
SANG Panting, GUO Yahui, ZHANG Qianyao, et al. Application of Surface Enhanced Raman Spectroscopy in the Detection of Harmful Substances in Milk and Dairy Products[J]. Science and Technology of Food Industry, 2021, 42(20): 417−425. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020090087
Citation: SANG Panting, GUO Yahui, ZHANG Qianyao, et al. Application of Surface Enhanced Raman Spectroscopy in the Detection of Harmful Substances in Milk and Dairy Products[J]. Science and Technology of Food Industry, 2021, 42(20): 417−425. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020090087

表面增强拉曼光谱在乳和乳品有害物质检测中的研究进展

doi: 10.13386/j.issn1002-0306.2020090087
基金项目: 国家重点研发计划项目(2018YFC1604202)
详细信息
    作者简介:

    桑潘婷(1996−),女,硕士研究生,研究方向:快速检测方法研究,E-mail:6190111061@stu.jiangnan.edu.cn

    通讯作者:

    郭亚辉(1988−),男,博士,副教授,研究方向:快速检测方法研究,E-mail:guoyahui@jiangnan.edu.cn

  • 中图分类号: TS207.3

Application of Surface Enhanced Raman Spectroscopy in the Detection of Harmful Substances in Milk and Dairy Products

  • 摘要: 乳和乳制品作为人类必不可少的食品之一,其中的有害物质,如农兽药残留、真菌毒素、非法添加物质以及其他污染物对消费者的健康安全构成了严重威胁,同时也阻碍了乳制品行业的发展。表面增强拉曼光谱法(Surface Enhanced Raman Spectroscopy,SERS)作为一种新兴的检测方法,有望能够满足目前乳和乳制品高通量,高灵敏度的检测需求。本文总结了SERS方法在牛奶检测中的研究进展,包括金属纳米检测探针和SERS固相平台的制备、抗体和适配体等分子识别技术的应用、核酸扩增技术以及微流控技术等与SERS的结合。最后,对SERS在乳制品的研究发展方向和应用前景做了总结和展望。
  • 图  1  3D Au @ Ag NP[19]

    Figure  1.  3D Au@Ag NP structure[19]

    图  2  Au/Ag碗状SERS基底[21]

    Figure  2.  Au/Ag BPHAN SERS substrate[21]

    图  3  SERS-免疫体系

    Figure  3.  SERS-immuno system

    图  4  一种磁性适配体传感器原理图[50]

    Figure  4.  Schematic diagram of a magnetic adapter sensor[50]

    图  5  MIP-SERS结构

    Figure  5.  MIP-SERS structure

    图  6  RPA-LF-SERS 试纸条[69]

    Figure  6.  RPA-LF-SERS assay[69]

    表  1  基于不同检测探针和基底的SERS方法

    Table  1.   SERS methods based on different enhanced substrates

    SERS基底检测对象(牛奶)检测限参考文献
    AgNPs三聚氰胺0.05 mg/L[26]
    AgNPs四环素0.01 mg/L[27]
    AgNPs青霉素G2.54×10−9 mol/L[28]
    金纳米球三聚氰胺0.11 mg/L[29]
    双金字塔金纳米结构四环素0.01 mg/mL[30]
    Au@AgNPs福美双、双氰胺0.21、14.88 mg/L[31]
    多壁碳纳米管-AuNPs磺胺吡啶8.8 ng/mL[32]
    磁性聚磷腈-AgNPs三聚氰胺0.6 mg/L[33]
    Au NPs@SiO22,4-二氯苯氧基乙酸0.01 ng/mL[34]
    半胱胺-Au@Ag NPs杀线威、噻虫啉0.031、0.023 mg/L[35]
    氧化铝@AgNP透明基底四环素、双氰胺1×10−9、1×10−7 mol/L[36]
    纳米球银膜三聚氰胺2 mg/L[37]
    咖啡环尿素、硫酸铵0.05 mg/mL[38]
    微咖啡环形的光纤基底三聚氰胺、四环素10−6 mol/L[39]
    疏水滤纸三聚氰胺1 mg/L[40]
    纳米线组装而成的粗糙纳米片三聚氰胺10-9 mol/L[41]
    金纳米指传感芯片三聚氰胺120 ng/L[42]
    电化学辅助芯片三聚氰胺0.3 mg/L[43]
    下载: 导出CSV

    表  2  基于不同分子识别技术的SERS方法检测乳制品中有害成分

    Table  2.   SERS methods based on different molecular recognition technologies

    分子识别技术检测对象检测限参考文献
    抗体卡那霉素2 pg/mL[54]
    粘菌素0.1 ng/mL[55]
    灭百可、来福灵2.3×10−4、2.6×10−5 ng/mL[56]
    卵清蛋白5 μg/mL[57]
    单核细胞增生性李斯特菌、
    鼠伤寒沙门氏菌
    75、75 CFU/mL[58]
    适配体Hg2+>0.33 μg/L[59]
    卡那霉素0.9 pg/mL[60]
    AFB10.4 pg/mL[61]
    氯霉素15 fmol/L[62]
    卡那霉素142 pg/mL[63]
    三聚氰胺1.0 pg·mL-1[64]
    土霉素0.003 ng/mL[65]
    分子印迹聚合物2,4-二氯苯氧基乙酸0.00147 ng/mL[66]
    下载: 导出CSV
  • [1] Vishnuraj M R, Kandeepan G, Rao K H, et al. Occurrence, public health hazards and detection methods of antibiotic residues in foods of animal origin: A comprehensive review[J]. Cogent Food & Agriculture,2016,2(1):1−8.
    [2] 万遂如. 关于畜牧业生产中兽用抗菌药减量化使用问题[J]. 养猪,2019(2):89−93. [Wan S R. On the reduction of the use of veterinary antibacterial drugs in animal husbandry production[J]. Pig,2019(2):89−93. doi:  10.3969/j.issn.1002-1957.2019.02.032
    [3] Guo L, Wang Y, Fei P, et al. A survey on the aflatoxin M1 occurrence in raw milk and dairy products from water buffalo in South China[J]. Food Control,2019,105:159−163. doi:  10.1016/j.foodcont.2019.05.033
    [4] Xiong J, Peng L, Zhou H, et al. Prevalence of aflatoxin M1 in raw milk and three types of liquid milk products in central-south China[J]. Food Control,2020,108:106840. doi:  10.1016/j.foodcont.2019.106840
    [5] 施春煜. 牛奶中β-内酰胺酶半定量快速检测试纸的研究[J]. 农产品加工月刊,2016(12):11−13. [Shi C Y. Semi-quantitative rapid detection test paper for β-lactamase in milk[J]. Agricultural Products Processing Monthly,2016(12):11−13.
    [6] 王温琪, 唐志德, 周燕, 等. 应用益生菌监测牛奶抗生素残留[J]. 中国微生态学杂志,2019,31(7):787−792. [Wang W Q, Tang Z D, Zhou Y, et al. Application of probiotics to monitor milk antibiotic residues[J]. Chinese Journal of Microecology,2019,31(7):787−792.
    [7] Zhang X, Wen K, Wang Z, et al. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M1 in milk[J]. Food Control,2016,60:588−595. doi:  10.1016/j.foodcont.2015.08.040
    [8] Jiefang, Sun, Xueyong, et al. Ultrasensitive on-site detection of biological active ricin in complex food matrices based on immunomagnetic enrichment and fluorescence switch-on nanoprobe[J]. Analytical Chemistry,2019,91(10):6454−6461.
    [9] Li J, Ren X, Diao Y, et al. Multiclass analysis of 25 veterinary drugs in milk by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Food Chemistry,2018,257:259−264. doi:  10.1016/j.foodchem.2018.02.144
    [10] 方灵, 韦航, 黄彪, 等. 超高效液相色谱-串联质谱法同时测定牛奶中38种抗生素残留[J]. 分析测试学报,2019,38(6):681−686. [Fang L, Wei H, Huang B, et al. Simultaneous determination of 38 antibiotic residues in milk by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory,2019,38(6):681−686. doi:  10.3969/j.issn.1004-4957.2019.06.008
    [11] Han M, Gong L, Wang J, et al. An octuplex lateral flow immunoassay for rapid detection of antibiotic residues, aflatoxin M1 and melamine in milk[J]. Sensors and Actuators B: Chemical,2019,292:94−104. doi:  10.1016/j.snb.2019.04.019
    [12] Wu C, Liu D, Peng T, et al. Development of a one-step immunochromatographic assay with two cutoff values of aflatoxin M1[J]. Food Control,2016,63:11−14. doi:  10.1016/j.foodcont.2015.11.010
    [13] Rossi R, Saluti G, Moretti S, et al. Multiclass methods for the analysis of antibiotic residues in milk by liquid chromatography coupled to mass spectrometry: A review[J]. Food Additives & Contaminants Part A Chemistry Analysis Control Exposure & Risk Assessment,2017,35(2):241−257.
    [14] Langer J, Jimenez de Aberasturi D, Aizpurua J, et al. Present and future of surface-enhanced raman scattering[J]. ACS Nano,2020,14(1):28−117. doi:  10.1021/acsnano.9b04224
    [15] Doering W E, Piotti M E, Natan M J, et al. SERS as a foundation for nanoscale, optically detected biological labels[J]. Advanced Materials,2007,19(20):3100−3108. doi:  10.1002/adma.200701984
    [16] Zong C, Xu M, Xu L, et al. Surface-enhanced raman spectroscopy for bioanalysis: Reliability and challenges[J]. Chemical Reviews,2018,118(10):4946−4980. doi:  10.1021/acs.chemrev.7b00668
    [17] William R V, Das G M, Dantham V R, et al. Enhancement of single molecule raman scattering using sprouted potato shaped bimetallic nanoparticles[J]. Scientific Reports,2019,9:10771. doi:  10.1038/s41598-019-47179-4
    [18] Alsammarraie F K, Lin M. Using standing gold nanorod arrays as surface-enhanced raman spectroscopy(SERS) substrates for detection of carbaryl residues in fruit juice and milk[J]. Journal of Agricultural & Food Chemistry,2017,65(3):666−674.
    [19] Mei R, Wang Y, Yu Q, et al. Gold nanorod array-bridged internal-standard SERS tags: From ultrasensitivity to multifunctionality[J]. ACS Applied Materials & Interfaces,2020,12(2):2059−2066.
    [20] Zhai Y, Zheng Y, Ma Z, et al. Synergistic enhancement effect for boosting raman detection sensitivity of antibiotics[J]. ACS Sensors,2019,4(11):2958−2965. doi:  10.1021/acssensors.9b01436
    [21] Nie B, Luo Y, Shi J, et al. Bowl-like pore array made of hollow Au/Ag alloy nanoparticles for SERS detection of melamine in solid milk powder[J]. Sensors and Actuators B-Chemical,2019,301:127087. doi:  10.1016/j.snb.2019.127087
    [22] Marques A, Veigas B, Araújo A, et al. Paper-based SERS platform for one-step screening of tetracycline in milk[J]. Scientific Reports,2019,9(1):17922. doi:  10.1038/s41598-019-54380-y
    [23] Zhou N, Zhou Q, Meng G, et al. Incorporation of a basil-seed-based surface enhanced raman scattering sensor with a pipet for detection of melamine[J]. ACS Sensors,2016,1(10):1193−1197. doi:  10.1021/acssensors.6b00312
    [24] Nguyen A H, Ma X, Park H G, et al. Low-blinking SERS substrate for switchable detection of kanamycin[J]. Sensors and Actuators B: Chemical,2019,282:765−773. doi:  10.1016/j.snb.2018.11.037
    [25] He H, Sun D, Pu H, et al. Applications of raman spectroscopic techniques for quality and safety evaluation of milk: A review of recent developments[J]. Critical Reviews in Food Science and Nutrition,2019,59(5):770−793. doi:  10.1080/10408398.2018.1528436
    [26] Liu S, Kannegulla A, Kong X, et al. Simultaneous colorimetric and surface-enhanced raman scattering detection of melamine from milk[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2020,231:118130. doi:  10.1016/j.saa.2020.118130
    [27] Dhakal S, Chao K, Huang Q, et al. A simple surface-enhanced raman spectroscopic method for on-site screening of tetracycline residue in whole milk[J]. Sensors,2018,18(2):424. doi:  10.3390/s18020424
    [28] Chen Y, Li X, Yang M, et al. High sensitive detection of penicillin G residues in milk by surface-enhanced raman scattering[J]. Talanta,2017,167:236−241. doi:  10.1016/j.talanta.2017.02.022
    [29] Kaleem A, Azmat M, Sharma A, et al. Melamine detection in liquid milk based on selective porous polymer monolith mediated with gold nanospheres by using surface enhanced raman scattering[J]. Food Chemistry,2019,277:624−631. doi:  10.1016/j.foodchem.2018.11.027
    [30] Li N, Han S, Zhang C, et al. Detection of chlortetracycline hydrochloride in milk with a solid sers substrate based on self-assembled gold nanobipyramids[J]. Analytical Sciences,2020,36(8):935−940. doi:  10.2116/analsci.19P476
    [31] Hussain A, Sun D, Pu H. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS[J]. Food Chemistry,2020,317:126429. doi:  10.1016/j.foodchem.2020.126429
    [32] Moreno V, Adnane A, Salghi R, et al. Nanostructured hybrid surface enhancement raman scattering substrate for the rapid determination of sulfapyridine in milk samples[J]. Talanta,2019,194:357−362. doi:  10.1016/j.talanta.2018.10.047
    [33] Huang C, Lu F, Xu K, et al. Synthesis of magnetic polyphosphazene-Ag composite particles as surface enhanced raman spectroscopy substrates for the detection of melamine[J]. Chinese Chemical Letters,2019,30(12):2009−2012. doi:  10.1016/j.cclet.2019.02.006
    [34] Xu Y, Kutsanedzie F, Hassan M, et al. Synthesized Au NPs@silica composite as surface-enhanced raman spectroscopy (SERS) substrate for fast sensing trace contaminant in milk[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2019,206:405−412. doi:  10.1016/j.saa.2018.08.035
    [35] Hussain A, Pu H, Sun D. Cysteamine modified core-shell nanoparticles for rapid assessment of oxamyl and thiacloprid pesticides in milk using SERS[J]. Journal of Food Measurement and Characterization,2020,14(4):2021−2029. doi:  10.1007/s11694-020-00448-7
    [36] Muhammad M, Yan B, Yao G, et al. Surface-enhanced raman spectroscopy for trace detection of tetracycline and dicyandiamide in milk using transparent substrate of Ag nanoparticle arrays[J]. ACS Applied Nano Materials,2020,3(7):7066−7075. doi:  10.1021/acsanm.0c01389
    [37] Xiao G, Li L, Yan A, et al. Direct detection of melamine in infant formula milk powder solution based on SERS effect of silver film over nanospheres[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2019,223:117269. doi:  10.1016/j.saa.2019.117269
    [38] Hussain A, Pu H, Sun D. SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect[J]. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment,2019,36(6):851−862.
    [39] Liu Y, Zhou F, Wang H, et al. Micro-coffee-ring-patterned fiber SERS probes and their in situ detection application in complex liquid environments[J]. Sensors and Actuators B-Chemical,2019,299:126990. doi:  10.1016/j.snb.2019.126990
    [40] Zhang C, You T, Yang N, et al. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine[J]. Food Chemistry,2019,287:363−368. doi:  10.1016/j.foodchem.2019.02.094
    [41] Xu D, Kang W, Zhang S, et al. Quantitative determination of melamine in milk by surface-enhanced raman scattering technique based on high surface roughness silver nanosheets assembled by nanowires[J]. Microchemical Journal,2019,148:190−196. doi:  10.1016/j.microc.2019.04.077
    [42] Kim A, Barcelo S J, Williams R S, et al. Melamine sensing in milk products by using surface enhanced raman scattering[J]. Anal Chem,2012,84(21):9303−9309. doi:  10.1021/ac302025q
    [43] Viehrig M, Rajendran S T, Sanger K, et al. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: A method for detection of melamine in milk[J]. Analytical Chemistry,2020,92(6):4317−4325. doi:  10.1021/acs.analchem.9b05060
    [44] Wang Z, Zong S, Wu L, et al. SERS-activated platforms for immunoassay: probes, encoding methods, and applications[J]. Chemical Reviews,2017,117(12):7910−7963. doi:  10.1021/acs.chemrev.7b00027
    [45] Yang K, Hu Y, Dong N. A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol[J]. Biosensors & Bioelectronics,2016,80:373−377.
    [46] Shi Q, Huang J, Sun Y, et al. Utilization of a lateral flow colloidal gold immunoassay strip based on surface-enhanced raman spectroscopy for ultrasensitive detection of antibiotics in milk[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2018,197:107−113. doi:  10.1016/j.saa.2017.11.045
    [47] Li A, Tang L, Song D, et al. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1[J]. Nanoscale,2016,8(4):1873−1878. doi:  10.1039/C5NR08372A
    [48] Li J, Wang W, Zhang H, et al. Programmable DNA tweezer-actuated SERS probe for the sensitive detection of AFB1[J]. Anal Chem,2020,92(7):4900−4907. doi:  10.1021/acs.analchem.9b04822
    [49] Yan W, Yang L, Zhuang H, et al. Engineered "hot" core-shell nanostructures for patterned detection of chloramphenicol[J]. Biosensors & Bioelectronics,2016,78:67−72.
    [50] Li H, Chen Q, Hassan M M, et al. A magnetite/PMAA nanospheres-targeting SERS aptasensor for tetracycline sensing using mercapto molecules embedded core/shell nanoparticles for signal amplification[J]. Biosensors & Bioelectronics,2017,92:192−199.
    [51] Guo X, Li J, Arabi M, et al. Molecular-imprinting-based surface-enhanced raman scattering sensors[J]. ACS sensors,2020,5(3):601−619. doi:  10.1021/acssensors.9b02039
    [52] Zhao P, Liu H, Zhang L, et al. Paper-based SERS sensing platform based on 3D silver dendrites and molecularly imprinted identifier sandwich hybrid for neonicotinoid quantification[J]. ACS Applied Materials & Interfaces,2020,12(7):8845−8854.
    [53] Xie Y, Zhao M, Hu Q, et al. Selective detection of chloramphenicol in milk based on a molecularly imprinted polymer-surface-enhanced raman spectroscopic nanosensor[J]. Journal of Raman Spectroscopy,2017,48(2):204−210. doi:  10.1002/jrs.5034
    [54] Zengin A, Tamer U, Caykara T. Extremely sensitive sandwich assay of kanamycin using surface-enhanced raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles[J]. Analytica Chimica Acta,2014,817:33−41. doi:  10.1016/j.aca.2014.01.042
    [55] Li Y, Tang S, Zhang W, et al. A surface-enhanced raman scattering-based lateral flow immunosensor for colistin in raw milk[J]. Sensors and Actuators B-Chemical,2019,282:703−711. doi:  10.1016/j.snb.2018.11.050
    [56] Li X, Yang T, Song Y, et al. Surface-enhanced raman spectroscopy(SERS)-based immunochromatographic assay(ICA) for the simultaneous detection of two pyrethroid pesticides[J]. Sensors and Actuators B-Chemical,2019,283:230−238. doi:  10.1016/j.snb.2018.11.112
    [57] He L, Rodda T, Haynes C L, et al. Detection of a foreign protein in milk using surface-enhanced raman spectroscopy coupled with antibody-modified silver dendrites[J]. Analytical Chemistry,2011,83(5):1510−1513. doi:  10.1021/ac1032353
    [58] Wu Z. Simultaneous detection of Listeria monocytogenes and Salmonella typhimurium by a SERS-based lateral flow immunochromatographic assay[J]. Food Analytical Methods,2019,12(5):1086−1091. doi:  10.1007/s12161-019-01444-4
    [59] Li H, Huang X, Mehedi Hassan M, et al. Dual-channel biosensor for Hg2+ sensing in food using Au@Ag/graphene-upconversion nanohybrids as metal-enhanced fluorescence and SERS indicators[J]. Microchemical Journal,2020,154:104563. doi:  10.1016/j.microc.2019.104563
    [60] Jiang Y, Sun D, Pu H, et al. Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor[J]. Talanta,2019,197:151−158. doi:  10.1016/j.talanta.2019.01.015
    [61] He H, Sun D, Pu H, et al. Bridging Fe3O4@Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1[J]. Food Chemistry,2020,324:126832. doi:  10.1016/j.foodchem.2020.126832
    [62] Fang Q, Li Y, Miao X, et al. Sensitive detection of antibiotics using aptamer conformation cooperated enzyme-assisted SERS technology[J]. Analyst,2019,144(11):3649−3658. doi:  10.1039/C9AN00190E
    [63] Jiang Y, Sun D, Pu H, et al. A simple and sensitive aptasensor based on SERS for trace analysis of kanamycin in milk[J]. Journal of Food Measurement and Characterization,2020.
    [64] Dong N, Hu Y, Yang K, et al. Development of aptamer-modified SERS nano sensor and oligonucleotide chip to quantitatively detect melamine in milk with high sensitivity[J]. Sensors and Actuators B-Chemical,2016,228:85−93. doi:  10.1016/j.snb.2015.12.089
    [65] Wu Z. AuNP tetramer-based aptasensor for SERS sensing of oxytetracycline[J]. Food Analytical Methods,2019,12(5):1121−1127. doi:  10.1007/s12161-019-01453-3
    [66] Xu Y, Hassan M M, Ali S, et al. SERS-based rapid detection of 2, 4-dichlorophenoxyacetic acid in food matrices using molecularly imprinted magnetic polymers[J]. Microchimica Acta,2020,187(8).
    [67] Wang Chongwen, Wang Chaoguang, Wang Xiaolong, et al. Magnetic SERS-strip for sensitive and simultaneous detection of respiratory viruses[J]. ACS Applied Materials & Interfaces,2019,11(21):19495−19505.
    [68] Wu Y, Choi N, Chen H, et al. Performance evaluation of surface-enhanced raman scattering-polymerase chain reaction sensors for future use in sensitive genetic assays[J]. Analytical Chemistry,2020,92(3):2628−2634. doi:  10.1021/acs.analchem.9b04522
    [69] Liu Haibin, Du Xinjun, Zang Yuxuan, et al. SERS-based lateral flow strip biosensor for simultaneous detection of Listeria monocytogenes and Salmonella enterica serotype enteritidis[J]. Journal of Agricultural & Food Chemistry,2017,65(47):10290−10299.
    [70] Lv X, Huang Y, Liu D, et al. Multicolor and ultrasensitive enzyme-linked immunosorbent assay based on the fluorescence hybrid chain reaction for simultaneous detection of pathogens[J]. Journal of Agricultural and Food Chemistry,2019,67(33):9390−9398. doi:  10.1021/acs.jafc.9b03414
    [71] 王炜. 表面增强拉曼光谱与高效液相色谱联用技术及应用研究[D]. 苏州: 苏州大学, 2015.

    Wang W. Surface-enhanced raman spectroscopy and high performance liquid chromatography combined technology and application research[D]. Suzhou: Soochow University, 2015.
    [72] Zhao Y, Tan A, Squire K, et al. Quaternion-based parallel feature extraction: Extending the horizon of quantitative analysis using TLC-SERS sensing[J]. Sensors and Actuators B-Chemical,2019,299:126902. doi:  10.1016/j.snb.2019.126902
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  18
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 网络出版日期:  2021-09-13

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。