海洋寡糖制备工艺及生物活性的研究进展

孙冲 姚昱锟 方婷 李长城

孙冲,姚昱锟,方婷,等. 海洋寡糖制备工艺及生物活性的研究进展[J]. 食品工业科技,2021,42(18):446−453. doi:  10.13386/j.issn1002-0306.2020080280
引用本文: 孙冲,姚昱锟,方婷,等. 海洋寡糖制备工艺及生物活性的研究进展[J]. 食品工业科技,2021,42(18):446−453. doi:  10.13386/j.issn1002-0306.2020080280
SUN Chong, YAO Yukun, FANG Ting, et al. Research Progress on Preparation Process and Biological Activity of Marine Oligosaccharides[J]. Science and Technology of Food Industry, 2021, 42(18): 446−453. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080280
Citation: SUN Chong, YAO Yukun, FANG Ting, et al. Research Progress on Preparation Process and Biological Activity of Marine Oligosaccharides[J]. Science and Technology of Food Industry, 2021, 42(18): 446−453. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080280

海洋寡糖制备工艺及生物活性的研究进展

doi: 10.13386/j.issn1002-0306.2020080280
基金项目: 福建省科技厅星火计划项目(2015S0075);福建农林大学科技创新专项基金项目(CXZX2017026,CXZX2017027);福建省高校产学研合作项目(2017N5004);福建农林大学国际合作项目(KXb16012A);福州市“十三五”海洋经济创新发展示范城市项目(FZHJ17)
详细信息
    作者简介:

    孙冲(1995−),男,硕士研究生,研究方向:海洋生物活性物质提取,E-mail:597656735@qq.com

    通讯作者:

    方婷(1981−),女,博士,教授,研究方向:预测微生物学、食品非热加工技术,E-mail:fangting930@163.com

    李长城(1986−),男,博士,讲师,研究方向:预测微生物学及安全风险评估、非热力加工技术,E-mail:changcheng_li@fafu.edu.cn

  • 中图分类号: TS254.1

Research Progress on Preparation Process and Biological Activity of Marine Oligosaccharides

  • 摘要: 随着海洋多糖研究的日益广泛,人们对海洋寡糖的研究也越来越受到重视。海洋寡糖是由海洋生物多糖经不同方法降解得到的小分子聚合物,具有来源广泛、分子量小、结构独特等特点。经降解后的海洋寡糖较多糖表现出更强的生物活性,具有抗氧化活性、抗肿瘤活性、免疫调节活性、抗炎活性、调节肠道微生物及许多其他生物活性,被广泛应用于食品、保健品、医学等领域。目前,海洋寡糖的制备方法主要有化学降解法、物理降解法和酶降解法。为了让更多人了解海洋寡糖的最新研究进展,促进海洋寡糖的研究与开发,本文重点对海洋寡糖的制备方法及生物活性进行了综述,以期为海洋寡糖的深入研究与开发提供一定的参考。
  • 表  1  海洋寡糖制备方法优缺点

    Table  1.   Advantages and disadvantages of preparation methods

    制备方法优点缺点参考文献
    酸法技术工艺成熟、成本低反应剧烈、易对降解产物活性造成影响、污染环境[14-20]
    氧化法成本低、产率高、绿色环保、易于工业化生产工艺复杂、重复性差[21-25]
    物理法操作简单、无污染降解效率低[26-31]
    酶法降解条件温和、绿色环保,产物得率高、活性高、均一性好酶种不易获得、成本高、酶活性低、稳定性差[32-36]
    下载: 导出CSV
  • [1] Zhu B W, Ni F, Xiong Q, et al. Marine oligosaccharides originated from seaweeds: Source, preparation, structure, physiological activity and applications[J]. Critical Reviews in Food Science and Nutrition,2021,61(1):60−74. doi:  10.1080/10408398.2020.1716207
    [2] 张柯柯, 刘伟治, 律倩倩. 海洋微生物来源的岩藻多糖降解酶[J]. 微生物学通报,2018,45(9):2054−2062. [Zhang K K, Liu Z W, Lyu Q Q. Fucoidan-degrading enzymes from marine microorganisms[J]. Microbiology China,2018,45(9):2054−2062.
    [3] 张磊, 王锦旭, 杨贤庆, 等. 海洋动物多糖的研究进展[J]. 食品工业,2018,39(1):211−215. [Zhang L, Wang J X, Yang X Q, et al. Research progress of marine animal polysaccharides[J]. The Food Industry,2018,39(1):211−215.
    [4] Zhao J, Yang J F, Song S, et al. Anticoagulant activity and structural characterization of polysaccharide from abalone(Haliotis discus hannai Ino) gonad[J]. Molecules(Basel, Switzerland),2016,21(6):697−708. doi:  10.3390/molecules21060697
    [5] 李俊慧, 李珊, 胡亚芹, 等. 食源性海洋硫酸多糖的神经保护构效机理研究进展[J]. 中国食品学报,2017,17(4):155−164. [Li J H, Li S, Hu Y Q, et al. Neuroprotection mechanism of sulfated polysaccharides from marine food: A review[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(4):155−164.
    [6] 赵小亮, 王钰婷, 肖宁, 等. 海洋寡糖及其衍生物活性的研究进展[J]. 生物技术进展,2018,8(6):477−488. [Zhao X L, Wang Y T, Xiao N, et al. Progress on activities of marine oligosaccharides and their derivatives[J]. Current Biotechnology,2018,8(6):477−488.
    [7] Shen J J, Chang Y G, Dong S G, et al. Cloning, expression and characterization of a ι-carrageenase from marine bacterium Wenyingzhuangia fucanilytica: A biocatalyst for producing ι-carrageenan oligosaccharides[J]. Journal of Biotechnology,2017,259:103−109. doi:  10.1016/j.jbiotec.2017.07.034
    [8] Shi D, Qi J, Zhang H, et al. Comparison of hydrothermal depolymerization and oligosaccharide profile of fucoidan and fucosylated chondroitin sulfate from Holothuria floridana[J]. International Journal of Biological Macromolecules,2019,132:738−747. doi:  10.1016/j.ijbiomac.2019.03.127
    [9] 曹佳淋, 辛妍娇, 汤顺清. 琼脂寡糖的制备及其对免疫细胞的作用[J]. 材料科学与工程学报,2016,34(6):890−894. [Cao J L, Xin Y J, Tang S Q. Preparation of agaro-oligosaccharides and their effect on immune cells[J]. Journal of Materials Science and Engineering,2016,34(6):890−894.
    [10] 于广利, 谭仁祥. 海洋天然产物与药物研究开发[M]. 北京: 科学出版社, 2016: 222−228.

    Yu G L, Tan R X. Marine natural products research and drug development[M]. Beijing: Science Press, 2016: 222−228.
    [11] Ouyang J M, Wang M, Lu P, et al. Degradation of sulfated polysaccharide extracted from algal Laminaria japonica, and its modulation on calcium oxalate crystallization[J]. Materials Science & Engineering C,2010,30(7):1022−1029.
    [12] Kalitnik A A, Marcov P A, Anastyuk S D, et al. Gelling polysaccharide from Chondrus armatus and its oligosaccharides: The structural peculiarities and anti-inflammatory activity[J]. Carbohydrate Polymers,2015(115):768−775.
    [13] Liu X, Hao J J, Zhang L J, et al. Activated AMPK explains hypolipidemic effects of sulfated low molecular weight guluronate on HepG2cells[J]. European Journal of Medicinal Chemistry,2014,85(15):304−310.
    [14] 刘雪, 王姝垚, 曹素健, 等. 海洋硫酸鼠李寡糖的制备研究[J]. 中国海洋药物,2017,36(6):18−22. [Liu X, Wang S Y, Cao S J, et al. Research on the preparation of marine sulfated rhamno-oligosaccharides[J]. Chinese Journal of Marine Drugs,2017,36(6):18−22.
    [15] Tommeraas K, Varum K M, Christensen B E. Preparation and characterisation of oligosaccharides produced by nitrous acid depolymerisation of chitosans[J]. Carbohydrate Research,2001,333:137−144. doi:  10.1016/S0008-6215(01)00130-6
    [16] 王浩贤. 聚甘露糖醛酸和聚古罗糖醛酸纯化及降解产物活性研究[D]. 青岛: 中国海洋大学, 2012: 10−12.

    Wang H X. The purification of polymannuronic acids and polyguluronic acids as well as the research on the activity of the oligosaccharides of algin series[D]. Qingdao: Ocean University of China, 2012: 10−12.
    [17] Haug A, Bjørn Larsen. A study on the constitution of alginic acid by partial acid hydrolysis[J]. Acta Chemica Scandinavica,1966,5:271−277.
    [18] 孙冲, 杜阿珠, 姚昱锟, 等. 响应面法优化固相酸水解鲍鱼脏器多糖工艺优化[J]. 食品工业科技,2020,41(11):171−177. [Sun C, Du A Z, Yao Y K, et al. Optimization of solid phase acid hydrolysis of polysaccharide from abalone viscera by response surface methodology[J]. Science and Technology of Food Industry,2020,41(11):171−177.
    [19] 秦玲, 孙辉, 刘志纯, 等. 绿藻多糖CH1-1的可控降解及其寡糖的制备研究[J]. 中国海洋药物,2019,38(1):23−27. [Qin L, Sun H, Liu Z C, el al. Research on the controlled degradation of the green alga polysaccharide CH1-1 and preparation of the oligosaccharides[J]. Chinese Journal of Marine Drugs,2019,38(1):23−27.
    [20] 邰宏博, 唐丽薇, 陈带娣, 等. 褐藻胶寡糖制备的研究进展[J]. 生命科学研究,2015,19(1):75−79. [Tai H B, Tang L W, Chen D D, et al. Progresses on preparation of alginate oligosaccharide[J]. Life Science Research,2015,19(1):75−79.
    [21] Courtois J. Oligosaccharides from land plants and algae: Production and applications in therapeutics and biotechnology[J]. Current Opinion in Microbiology,2009,12(3):261−273. doi:  10.1016/j.mib.2009.04.007
    [22] Kim K J, Lee O H, Lee B Y. Low-molecular-weight fucoidan regulates myogenic differentiation through the mitogen-activated protein kinase pathway in C2C12 cells[J]. British Journal of Nutrition,2011,106(12):1836−1844. doi:  10.1017/S0007114511002534
    [23] Wu S, Huang X. Preparation and antioxidant activities of oligosaccharides from Crassostrea gigas[J]. Food Chemistry,2017,216:243−246. doi:  10.1016/j.foodchem.2016.08.043
    [24] 王灵昭, 史辰娟, 汪维喜, 等. 过氧化氢降解水不溶性条斑紫菜多糖[J]. 食品与发酵工业,2018,44(3):204−208. [Wang L Z, Shi C J, Wang W X, et al. Degradation of water-insoluble polysaccharide from Porphyra yezoensis by hydrogen peroxide[J]. Food and Fermentation Industries,2018,44(3):204−208.
    [25] Li J H, Li S, Zhi Z J, et al. Depolymerization of fucosylated chondroitin sulfate with a modified fenton-system and anticoagulant activity of the resulting fragments[J]. Marine Drugs,2016,14(9):170−183. doi:  10.3390/md14090170
    [26] Li B, Liu S, Xing R, et al. Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities[J]. Carbohydrate Polymers,2013,92(2):1991−1996. doi:  10.1016/j.carbpol.2012.11.088
    [27] Jo B W, Choi S K. Degradation of fucoidans from Sargassum fulvellum and their biological activities[J]. Carbohydrate Polymers,2014,111:822−829. doi:  10.1016/j.carbpol.2014.05.049
    [28] 段科, 单虎, 林英庭, 等. 微波辅助盐酸/过氧化氢降解浒苔多糖及其抗氧化活性[J]. 食品科技,2015,40(12):142−147. [Duan K, Shan H, Lin Y T, et al. Degradation of polysaccharide from Enteromorpha prolifera with hydrochloric acid and hydrogen peroxide assisted by microwave and its antioxidant activity[J]. Food Science and Technology,2015,40(12):142−147.
    [29] 凌绍梅, 吴永沛, 刘翼翔, 等. 低分子量岩藻聚糖制备工艺及其抗菌活性的研究[J]. 食品科技,2014,39(7):184−189. [Ling S M, Wu Y P, Liu Y X, et al. Preparation technology of low-molecular-weight fucoidans and their antibacterial activity[J]. Food Science and Technology,2014,39(7):184−189.
    [30] Li J H, Li S, Wu L M, et al. Ultrasound-assisted fast preparation of low molecular weight fucosylated chondroitin sulfate with antitumor activity[J]. Carbohydrate Polymers,2019,209:82−91. doi:  10.1016/j.carbpol.2018.12.061
    [31] Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chemical Reviews,2006,106(9):4060−4066.
    [32] Belik A A, Silchenko A S, Kusaykin M I, et al. Alginate lyases: Substrates, structure, properties, and prospects of application[J]. Russian Journal of Bioorganic Chemistry,2018,44(4):386−396. doi:  10.1134/S1068162018040040
    [33] Boucelkha A, Petit E, Elboutachfaiti R, et al. Production of guluronate oligosaccharide of alginate from brown algae Stypocaulon scoparium using an alginate lyase[J]. Journal of Applied Phycology,2016,29(1):1−11.
    [34] 邓宇峰, 林娟, 叶秀云, 等. 龙须菜酶解制备琼胶寡糖的工艺优化[J]. 食品工业,2019,40(5):110−115. [Deng Y F, Lin J, Ye X Y, et al. Process optimization of preparation of agarose oligosaccharides by enzymatic hydrolysis of Gracilaria lemaneiformis[J]. The Food Industry,2019,40(5):110−115.
    [35] Yu L, Xu X, Xue C, et al. Enzymatic preparation and structural determination of oligosaccharides derived from sea cucumber(Acaudina molpadioides) fucoidan[J]. Food Chemistry,2013,139(1−4):702−709. doi:  10.1016/j.foodchem.2013.01.055
    [36] Zhao X M, She X P, Liang X M, et al. Induction of antiviral resistance and stimulary effect by oligochitosan in tobacco[J]. Pestic Biochem Physiol,2006(87):78−84.
    [37] Falkeborg M, Cheong L Z, Gianfico C, et al. Alginate oligosaccharides: Enzymatic preparation and antioxidant property evaluation[J]. Food Chemistry,2014,164:185−194. doi:  10.1016/j.foodchem.2014.05.053
    [38] Ramos P E, Silva P, Alario M M, et al. Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics[J]. Food Hydrocolloids,2018,77:8−16. doi:  10.1016/j.foodhyd.2017.08.031
    [39] 蒋越, 姚子昂, 陈丰嘉, 等. 藻酸盐寡糖制备工艺及生物活性研究进展[J]. 中国酿造,2018,37(8):19−23. [Jiang Y, Yao Z A, Chen F J, et al. Preparation of alginate oligosaccharides and their biological activities[J]. China Brewing,2018,37(8):19−23. doi:  10.11882/j.issn.0254-5071.2018.08.005
    [40] Sun Y J, Yang B Y, Wu Y M, et al. Structural characterization and antioxidant activities of κ-carrageenan oligosaccharides degraded by different method[J]. Food Chemistry,2015,178:311−318. doi:  10.1016/j.foodchem.2015.01.105
    [41] Zhang Y H, Song X N, Lin Y, et al. Antioxidant capacity and prebiotic effects of Gracilaria neoagaro oligosaccharides prepared by agarase hydrolysis[J]. International Journal of Biological Macromolecules,2019,137:177−186. doi:  10.1016/j.ijbiomac.2019.06.207
    [42] Liu X Y, Liu D, Lin G P, et al. Anti-ageing and antioxidant effects of sulfate oligosaccharides from green algae Ulva lactuca and Enteromorpha prolifera in SAMP8 mice[J]. International Journal of Biological Macromolecules,2019,139:342−351. doi:  10.1016/j.ijbiomac.2019.07.195
    [43] Chen J Y, Hu Y, Zhang L R, et al. Alginate oligosaccharide DP5 exhibits antitumor effects in osteosarcoma patients following surgery[J]. Frontiers in Pharmacology,2017,8:623. doi:  10.3389/fphar.2017.00623
    [44] Yang Y, Ma Z, Yang G, et a. Alginate oligosaccharide indirectly affects toll-like receptor signaling via the inhibition of microRNA-29b in aneurysm patients after endovascular aortic repair[J]. Drug Design Development & Therapy,2017,11:2565−2579.
    [45] Zou P, Yuan S, Yang X, et al. Structural characterization and antitumor effects of chitosan oligosaccharides against orthotopic liver tumor via NF-κB signaling pathway[J]. Journal of Functional Foods,2019,57:157−165. doi:  10.1016/j.jff.2019.04.002
    [46] 张胜霞, 吴海歌, 姚子昂, 等. 两种海洋寡糖对S180荷瘤小鼠抗肿瘤及免疫调节作用的研究[J]. 现代免疫学,2012,32(1):5−8. [Zhang S X, Wu H G, Yao Z A, et al. Anti-tumor effect and immunoregulatory activity of two marine oligosaccharides on S180 sarcoma in mice[J]. Current Immunology,2012,32(1):5−8.
    [47] Yuan H, Song J, Li X, et al. Immunomodulation and antitumor activity of κ-carrageenan oligosaccharides[J]. Cancer Letters,2006,243(2):228−234. doi:  10.1016/j.canlet.2005.11.032
    [48] Yao Z A, Xu L, Wu H G. Immunomodulatory function of κ-carrageenan oligosaccharides acting on LPS-activated microglial cells[J]. Neurochemical Research,2014,39(2):333−343. doi:  10.1007/s11064-013-1228-4
    [49] Xu L, Yao Z, Wu H, et al. The immune regulation ofκ-car- rageenan oligosaccharide and its desulfated derivatives on LPS- activated microglial cells[J]. Neurochemistry International,2012,61(5):689−696. doi:  10.1016/j.neuint.2012.06.019
    [50] Kidgell J T, Glasson C, Magnusson M, et al. The molecular weight of ulvan affects thein vitro inflammatory response of a murine macrophage[J]. International Journal of Biological Macromolecules,2020,150:839−848. doi:  10.1016/j.ijbiomac.2020.02.071
    [51] Xu X, Wu X T, Wang Q Q, et al. Immunomodulatory effects of alginate oligosaccharides on murine macrophage RAW264.7 cells and their structure-activity relationships[J]. Journal of Agricultural and Food Chemistry,2014,62(14):3168−3176. doi:  10.1021/jf405633n
    [52] 吴哲, 任丹丹, 梁馨元, 等. 褐藻胶寡糖的制备分离及生物活性[J]. 食品安全质量检测学报,2020,11(1):1−7. [Wu Z, Ren D D, Liang X Y, et al. Preparation, separation and biological activities of alginate oligosaccharides[J]. Journal of Food Safety and Quality,2020,11(1):1−7.
    [53] Shi L, Fang B, Yong Y H, et al. Chitosan oligosaccharide-mediated attenuation of LPS-induced inflammation in IPEC-J2 cells is related to the TLR4/NF-κB signaling pathway[J]. Carbohydrate Polymers,2019,219:269−279. doi:  10.1016/j.carbpol.2019.05.036
    [54] Vo T S, Ngo D H, Ta Q V, et al. Protective effect of chitin oligosaccharides against lipopolysaccharide-induced inflammatory response in BV-2 microglia[J]. Cellular Immunology,2012,277(1-2):14−21. doi:  10.1016/j.cellimm.2012.06.005
    [55] Chung M J, Park J K, Park Y I. Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE-antigen complex-stimulated RBL-2H3 cells and asthma model mice[J]. International Immunopharmacology,2012,12(2):453−459. doi:  10.1016/j.intimp.2011.12.027
    [56] Guo J, Han S, Lu X, et al. κ-Carrageenan hexamer have significant anti-inflammatory activity and protect RAW264.7 macrophages by inhibiting CD14[J]. Journal of Functional Foods,2019,57:335−344. doi:  10.1016/j.jff.2019.04.029
    [57] 史旭阳. 褐藻胶寡糖的抗炎活性机制研究[D]. 深圳: 深圳大学, 2015: 10−14.

    Shi X Y. Investigation of the anti-inflammatory activity of alginate-derived oligosaccharides[D]. Shenzhen: Shenzhen University, 2015: 10−14.
    [58] Shang Q, Jiang H, Cai C, et al. Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview[J]. Carbohydrate Polymers,2018,179:173−185. doi:  10.1016/j.carbpol.2017.09.059
    [59] Marchesi J R, Adams D H, Fava F, et al. The gut microbiota and host health: A new clinical frontier[J]. Gut,2016,65(2):330−339. doi:  10.1136/gutjnl-2015-309990
    [60] Tang D, Wang Y H, Kang W Y, et al. Chitosan attenuates obesity by modifying the intestinal microbiota and increasing serum leptin levels in mice[J]. Journal of Functional Foods,2020,64:1−10.
    [61] Li S, Li J, Mao G, et al. Effect of the sulfation pattern of sea cucumber-derived fucoidan oligosaccharides on modulating metabolic syndromes and gut microbiota dysbiosis caused by HFD in mice[J]. Journal of Functional Foods,2019,55:193−210. doi:  10.1016/j.jff.2019.02.001
    [62] Sun Y J, Cui X Y, Duan M M, et al. In vitro fermentation of κ-carrageenan oligosaccharides by human gut microbiota and its inflammatory effect on HT29 cells[J]. Journal of Functional Foods,2019,59:80−91. doi:  10.1016/j.jff.2019.05.036
    [63] Zhang X, Aweya J J, Huang Z X, et al. In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro-oligosaccharides by human fecal inocula and its impact on microbiota[J]. Carbohydrate Polymers,2020,234:115894. doi:  10.1016/j.carbpol.2020.115894
    [64] Guo J J, Ma L L, Shi H T, et al. Alginate oligosaccharide prevents acute doxorubicin cardiotoxicity by suppressing oxidative stress and endoplasmic reticulum-mediated apoptosis[J]. Marine Drugs,2016,14(12):231−243. doi:  10.3390/md14120231
    [65] Hu Y, Feng Z, Feng W J, et al. AOS ameliorates monocrotaline-induced pulmonary hypertension by restraining the activation of P-selectin/p38MAPK/NF-κB pathway in rats[J]. Biomedecine & Pharmacotherapie,2019,109:1319−1326.
    [66] Zhang Y H, Liu H, Yin H, et al. Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.)[J]. Plant Physiology & Biochemistry,2013,71:49−56.
    [67] Higashimura Y, Naito Y, Takagi T, et al. Preventive effect of agaro-oligosaccharides on non-steroidal anti-inflammatory drug-induced small intestinal injury in mice[J]. Journal of Gastroenterology & Hepatology,2014,29(2):310−317.
    [68] 郭娜, 姚子昂, 于国友, 等. 海带酶解产物对海参生长及其免疫相关因子的影响[J]. 中国酿造,2019,38(4):160−164. [Guo N, Yao Z A, Yu G Y, et al. Effects of enzymatic hydrolysate of Laminaria japonica on growth and immune-related factors of sea cucumber[J]. China Brewing,2019,38(4):160−164. doi:  10.11882/j.issn.0254-5071.2019.04.031
    [69] Shu Z H, Shi X Z, Nie D Q, et al. Low-molecular-weight fucoidan inhibits the viability and invasiveness and triggers apoptosis in IL-1β-treated human rheumatoid arthritis fibroblast synoviocytes[J]. Inflammation,2015,38(5):1777−1786. doi:  10.1007/s10753-015-0155-8
    [70] Li S, Li J, Mao G, et al. Fucosylated chondroitin sulfate oligosaccharides from Isostichopus badionotus regulates lipid disorder in C57BL/6 mice fed a high-fat diet[J]. Carbohydrate Polymers,2018,201:634−642. doi:  10.1016/j.carbpol.2018.08.020
  • 加载中
计量
  • 文章访问数:  44
  • HTML全文浏览量:  15
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 网络出版日期:  2021-08-02
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。