荞麦蛋白结构、生理活性及其应用的研究进展

刘靖 宋雨 赵钢 耳时里且 胡一晨 邹亮

刘靖,宋雨,赵钢,等. 荞麦蛋白结构、生理活性及其应用的研究进展[J]. 食品工业科技,2021,42(20):400−407. doi:  10.13386/j.issn1002-0306.2020080278
引用本文: 刘靖,宋雨,赵钢,等. 荞麦蛋白结构、生理活性及其应用的研究进展[J]. 食品工业科技,2021,42(20):400−407. doi:  10.13386/j.issn1002-0306.2020080278
LIU Jing, SONG Yu, ZHAO Gang, et al. Research Progress in the Structure, Physiological Activities and Applications of Buckwheat Protein[J]. Science and Technology of Food Industry, 2021, 42(20): 400−407. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080278
Citation: LIU Jing, SONG Yu, ZHAO Gang, et al. Research Progress in the Structure, Physiological Activities and Applications of Buckwheat Protein[J]. Science and Technology of Food Industry, 2021, 42(20): 400−407. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080278

荞麦蛋白结构、生理活性及其应用的研究进展

doi: 10.13386/j.issn1002-0306.2020080278
基金项目: 国家重点研发计划项目 (2020YFD1001404);四川省科技厅重点研发项目(2019YFS0526);成都市科技局科技创新研发项目(2019-YF05-02421-SN);现代农业产业技术体系建设专项资金(CARS-07-01A)
详细信息
    作者简介:

    刘靖(1998−),女,硕士研究生,研究方向:食品营养功能成分分析与产品开发,E-mail:1416473841@qq.com

    通讯作者:

    胡一晨(1987−),女,博士,副教授,研究方向:食品营养功能成分分析与产品开发,E-mail:huyichen0323@126.com

    邹亮(1979−),男,博士,教授,研究方向:食品营养功能成分分析与产品开发,E-mail:zouliangcdu@126.com

  • 中图分类号: TS201.4

Research Progress in the Structure, Physiological Activities and Applications of Buckwheat Protein

  • 摘要: 荞麦是一种无麸质谷物,其蛋白质含量较高,氨基酸配比合理,是一种优质蛋白质来源。荞麦蛋白营养价值高,具有降胆固醇、降血压、降血糖等多种保健功效,在功能食品等领域具有开发价值,应用前景广阔。本文分析了荞麦蛋白的提取方法及其各自的优缺点,综述了近年来国内外对荞麦蛋白结构特性、食品功能特性、生理活性及其应用等方面的研究现状,并对荞麦蛋白的研究进行了展望,以期为荞麦蛋白的开发利用及相关产品的深加工提供参考。
  • 表  1  荞麦蛋白的提取方法

    Table  1.   Extraction method of buckwheat protein

    提取方法原理优、缺点应用举例
    碱提酸沉法利用蛋白质在等电点时溶解度最低进行分离成本低廉;蛋白易变性,成品色泽较差,后期分离纯化难度大。王兴[7]在50 ℃,pH10,料液比1:10(g/mL)下提取40 min,然后调节pH为4.2沉淀苦荞蛋白,得率达到13.9%。
    酶法降解植物细胞壁成分,分离提纯蛋白蛋白不易变性,且便于后期分离;需注意灭酶时间,避免蛋白降解。朱慧等[8]采用碱性蛋白酶提取苦荞蛋白,提取率达到73%,其中,清蛋白占19.1%、球蛋白占21.5%、醇溶蛋白占4.4%、谷蛋白占55%。
    硫酸铵盐析法不同饱和度的硫酸铵使溶液中不同高分子物质沉淀析出蛋白内部结构不会被破坏,且易于后期分离纯化。周小理等[9]采用硫酸铵饱和度40%去除苦荞杂蛋白,硫酸铵饱和度80%进行二次沉淀获得苦荞水溶性蛋白。
    Osborne
    分级法
    根据清蛋白、球蛋白、醇溶蛋白、谷蛋白溶解性差异,将其分离提取获得蛋白种类多,纯度高;步骤繁琐。李相沂等[10]从荞麦中提取出清蛋白、球蛋白、醇溶蛋白和谷蛋白的含量分别为39.98%、12%、0.47%和20.47%,蛋白质提取率为71.97%。
    干法机械力研磨后,根据各组分理化性质差异,涡轮分离获得蛋白质组分可持续性强,保留蛋白的天然功能性质。Chen等[11]将干法分级与水热处理相结合,开发出一种富含多酚的荞麦蛋白加工方法,成品富含麦芽香味。
    下载: 导出CSV

    表  2  荞麦蛋白的氨基酸组成[25,30-34]

    Table  2.   Amino acid composition of buckwheat protein[25,30-34]

    氨基酸
    含量
    (g/100 g蛋白质)
    FAO推荐值(g/100 g蛋白质)
    2~5 岁10~12 岁成年人
    赖氨酸4.87~7.685.84.41.6
    组氨酸2.30~5.391.91.91.6
    苏氨酸2.80~4.023.42.80.9
    缬氨酸4.65~7.053.52.51.3
    异亮氨酸3.38~5.352.82.81.3
    亮氨酸5.90~8.716.64.41.9
    蛋氨酸+半胱氨酸1.20~6.762.52.21.7
    苯丙氨酸+酪氨酸7.31~8.706.32.21.9
    精氨酸9.41~13.18
    天冬氨酸8.30~11.80
    丝氨酸4.40~10.54
    谷氨酸15.18~24.44
    甘氨酸4.00~8.40
    丙氨酸3.20~6.36
    脯氨酸3.00~4.11
    色氨酸1.60~2.16
    下载: 导出CSV
  • [1] Bhinder S, Kaur A, Singh B, et al. Proximate composition, amino acid profile, pasting and process characteristics of flour from different tartary buckwheat varieties[J]. Food Research International,2020,130:108946. doi:  10.1016/j.foodres.2019.108946
    [2] Mir N A, Riar C S, Singh S. Nutritional constituents of pseudo cereals and their potential use in food systems: A review[J]. Trends in Food Science & Technology,2018,75:170−180.
    [3] 谭萍, 方玉梅, 王盼, 等. 苦荞麦蛋白质的酶提工艺研究[J]. 食品研究与开发,2016,37(21):79−83. [Tan P, Fang Y M, Wang P, et al. Study of the extracted process on the protein of tartary buckwheat by using enzyme[J]. Food Research and Development,2016,37(21):79−83. doi:  10.3969/j.issn.1005-6521.2016.21.018
    [4] 张超. 苦荞麦蛋白质提取以及应用的研究[D]. 无锡: 江南大学, 2004.

    Zhang C. Studies on anti-fatigue ability of buckwheat protein[D]. Wuxi: Jiangnan University, 2004.
    [5] 李宗杰. 苦荞蛋白的制备、生物活性鉴定及其在猪群中的应用[D]. 南京: 南京农业大学, 2016.

    Li Z J. Preparation and bio-active effects study of tartary buckwheat protein and its application on swine breeding husbandry[D]. Nanjing: Nanjing Agricultural University, 2016.
    [6] Loreto A M, James O M. Composition, protein profile and rheological properties of pseudocereal-based protein-rich ingredients[J]. Foods,2018,7(5):73. doi:  10.3390/foods7050073
    [7] 王兴. 苦荞蛋白模拟消化产物的抗氧化特性研究[D]. 咸阳: 西北农林科技大学, 2009.

    Wang X. Study on antioxidant properties of simulating gastrointestinal digestion products of tartary buckwheat protein[D]. Xianyang: Northwest A&F University, 2009.
    [8] 朱慧, 涂世, 刘蓉蓉, 等. 酶法提取苦荞麦蛋白的理化性质和加工性质[J]. 食品科学,2010,31(19):197−203. [Zhu H, Tu S, Liu R R, et al. Physico-chemical and functional properties of enzymatically prepared tatary buckwheat protein[J]. Food Science,2010,31(19):197−203.
    [9] 周小理, 黄琳, 周一鸣. 苦荞水溶性蛋白体外吸附胆酸盐能力的研究[J]. 食品科学,2011,32(23):77−81. [Zhou X L, Huang L, Zhou Y M, et al. In vitro binding of bile salts by water-soluble proteins from tartary buckwheat grains[J]. Food Science,2011,32(23):77−81.
    [10] 李相沂. 荞麦蛋白质的提取及其酶解物的ace抑制活性研究[D]. 呼和浩特: 内蒙古农业大学, 2016.

    Li X Y. Study on extraction of buckwheat protein and angiotensin converting enzyme inhibitory activity of the hydrolysates[D]. Hohhot: Inner Mongolia Agricultural University, 2016.
    [11] Chen X W, Luo D Y, Chen Y J, et al. Dry fractionation of surface abrasion for polyphenol-enriched buckwheat protein combined with hydrothermal treatment[J]. Food Chemistry,2019,285:414−422. doi:  10.1016/j.foodchem.2019.01.182
    [12] Guo X N, Yao H. Fractionation and characterization of tartary buckwheat flour proteins[J]. Food Chemistry,2006,98(1):90−94. doi:  10.1016/j.foodchem.2005.05.055
    [13] Radović S R, Maksimović V R, Varkonji-Gašić E I. Characterization of buckwheat seed storage proteins[J]. Journal of Agricultural and Food Chemistry,1996,44(4):972−974. doi:  10.1021/jf950655x
    [14] Tang C, Wang X. Physicochemical and structural characterisation of globulin and albumin from common buckwheat (Fagopyrum esculentum Moench) seeds[J]. Food Chemistry,2010,121(1):119−126. doi:  10.1016/j.foodchem.2009.12.016
    [15] Sano M, Nakagawa M, Oishi A, et al. Diversification of 13s globulins, allergenic seed storage proteins, of common buckwheat[J]. Food Chemistry,2014,155:192−198. doi:  10.1016/j.foodchem.2014.01.047
    [16] Choi S, Ma C. Extraction, purification and characterization of globulin from common buckwheat(Fagopyrum esculentum Moench) seeds[J]. Food Research International,2006,39(9):974−981. doi:  10.1016/j.foodres.2006.06.004
    [17] Janssen F, Pauly A, Rombouts I, et al. Proteins of amaranth (Amaranthus spp.), buckwheat (Fagopyrum spp.), and quinoa (Chenopodium spp.): A food science and technology perspective[J]. Comprehensive Reviews in Food Science and Food Safety,2017,16(1):39−58. doi:  10.1111/1541-4337.12240
    [18] Zhou Y, Jiang Y, Shi R, et al. Structural and antioxidant analysis of tartary buckwheat(Fagopyrum tartaricum Gaertn.) 13s globulin[J]. Journal of the Science of Food and Agriculture,2020,100(3):1220−1229. doi:  10.1002/jsfa.10133
    [19] 侍荣华. 苦荞活性肽对脂代谢的调节作用及机理研究[D]. 上海: 上海应用技术大学, 2019.

    Shi R H. Effects of tartary buck-wheat bioactive peptides on lipid metabolism and its mechanism[D]. Shanghai: Shanghai Institute of Technology, 2019.
    [20] Alvarez-Jubete L, Arendt E K, Gallagher E. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients[J]. Trends in Food Science & Technology,2010,21(2):106−113.
    [21] Nałęcz D, Dziuba J, Minkiewicz P, et al. Identification of oat(Avena sativa) and buckwheat(Fagopyrum esculentum) proteins and their prolamin fractions using two-dimensional polyacrylamide gel electrophoresis[J]. European Food Research and Technology,2009,230(1):71−78. doi:  10.1007/s00217-009-1143-8
    [22] 高冬丽, 高金锋, 党根友, 等. 荞麦籽粒蛋白质组分特性研究[J]. 华北农学报,2008,23(2):68−71. [Gao D L, Gao J F, Dang G Y, et al. Characterization of protein components of buckwheat seeds[J]. Acta Agriculturae Boreali-Sinica,2008,23(2):68−71. doi:  10.7668/hbnxb.2008.02.015
    [23] 秦培友. 我国主要荞麦品种资源品质评价及加工处理对荞麦成分和活性的影响[D]. 北京: 中国农业科学院, 2012.

    Qin P Y. Quality evaluation of Chinese main buckwheat cultivars and effect of processing on the components and health-relevant functionality of buckwheat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012.
    [24] Tomotake H, Shimaoka I, Kayashita J, et al. Physicochemical and functional properties of buckwheat protein product[J]. Journal of Agricultural and Food Chemistry,2002,50(7):2125−2129. doi:  10.1021/jf011248q
    [25] Chen X W, Chen Y J, Li J Y, et al. Enzyme-assisted development of biofunctional polyphenol-enriched buckwheat protein: Physicochemical properties, in vitro digestibility, and antioxidant activity[J]. Journal of the Science of Food and Agriculture,2019,99(6):3176−3185. doi:  10.1002/jsfa.9534
    [26] Raikos V, Neacsu M, Russell W, et al. Comparative study of the functional properties of lupin, green pea, fava bean, hemp, and buckwheat flours as affected by pH[J]. Food Science & Nutrition,2015,2(6):802−810.
    [27] 周欣悦. 荞麦蛋白的制备与功能特性分析[J]. 食品安全导刊,2019(18):154−156. [Zhou X Y. Preparation of buckwheat protein and analysis of its functional characteristics[J]. China Food Safety Magazine,2019(18):154−156.
    [28] 胡方洋, 陈金玉, 王轻, 等. 不同干燥方式对苦荞蛋白功能性质的影响[J]. 食品科技,2020,45(1):103−108. [Hu F Y, Chen J Y, Wang Q, et al. Effects of different drying methods on functional properties of tartary buckwheat protein[J]. Food Science and Technology,2020,45(1):103−108.
    [29] Xue F, Wu Z, Tong J, et al. Effect of combination of high-intensity ultrasound treatment and dextran glycosylation on structural and interfacial properties of buckwheat protein isolates[J]. Bioscience, Biotechnology, and Biochemistry,2017,81(10):1891−1898. doi:  10.1080/09168451.2017.1361805
    [30] Thanh T N N, Dang T L N, Naoto I, et al. Nutritional composition, bioactive compounds and diabetic enzyme inhibition capacity of three varieties of buckwheat in Japan[J]. Cereal Chemistry,2018,95:1−10. doi:  10.1002/cche.1000
    [31] Deng Y, Padilla-Zakour O, Zhao Y, et al. Influences of high hydrostatic pressure, microwave heating, and boiling on chemical compositions, antinutritional factors, fatty acids, in vitro protein digestibility, and microstructure of buckwheat[J]. Food and Bioprocess Technology,2015,8(11):2235−2245. doi:  10.1007/s11947-015-1578-9
    [32] Tang C, Peng J, Zhen D, et al. Physicochemical and antioxidant properties of buckwheat(Fagopyrum esculentum Moench) protein hydrolysates[J]. Food Chemistry,2009,115(2):672−678. doi:  10.1016/j.foodchem.2008.12.068
    [33] Zhang C N, Zhang R, Li Y M, et al. Cholesterol-lowering activity of tartary buckwheat protein[J]. Journal of Agricultural and Food Chemistry,2017,65(9):1900−1906. doi:  10.1021/acs.jafc.7b00066
    [34] Ahmed A, Khalid N, Ahmad A, et al. Phytochemicals and biofunctional properties of buckwheat: A review[J]. The Journal of Agricultural Science,2014,152(3):349−369. doi:  10.1017/S0021859613000166
    [35] Kayashita J, Shimaoka I, Nakajoh M, et al. Consumption of buckwheat protein lowers plasma cholesterol and raises fecal neutral sterols in cholesterol-fed rats because of its low digestibility[J]. The Journal of Nutrition,1997,127(7):1395−1400. doi:  10.1093/jn/127.7.1395
    [36] Kayashita J, Shimaoka I, Nakajyoh M. Hypocholesterolemic effect of buckwheat protein extract in rats fed cholesterol enriched diets[J]. Nutrition Research,1995,15(5):691−698. doi:  10.1016/0271-5317(95)00036-I
    [37] Tomotake H, Yamamoto N, Kitabayashi H, et al. Preparation of tartary buckwheat protein product and its improving effect on cholesterol metabolism in rats and mice fed cholesterol-enriched diet[J]. Journal of Food Science,2007,72(7):S528−S533. doi:  10.1111/j.1750-3841.2007.00474.x
    [38] Ma Y Y, Xiong Y L. Antioxidant and bile acid binding activity of buckwheat protein in vitro digests[J]. Journal of Agricultural and Food Chemistry,2009,57(10):4372−4380. doi:  10.1021/jf803670u
    [39] Zhou X L, Yan B B, Xiao Y, et al. Tartary buckwheat protein prevented dyslipidemia in high-fat diet-fed mice associated with gut microbiota changes[J]. Food and Chemical Toxicology,2018,119:296−301. doi:  10.1016/j.fct.2018.02.052
    [40] Li C H, Matsui T, Matsumoto K, et al. Latent production of angiotensin i-converting enzyme inhibitors from buckwheat protein[J]. Journal of Peptide Science,2002,8(6):267−274. doi:  10.1002/psc.387
    [41] Ma M S, Bae I Y, Lee H G, et al. Purification and identification of angiotensin i-converting enzyme inhibitory peptide from buckwheat(Fagopyrum esculentum Moench)[J]. Food Chemistry,2006,96(1):36−42. doi:  10.1016/j.foodchem.2005.01.052
    [42] Koyama M, Naramoto K, Nakajima T, et al. Purification and identification of antihypertensive peptides from fermented buckwheat sprouts[J]. Journal of Agricultural and Food Chemistry,2013,61(12):3013−3021. doi:  10.1021/jf305157y
    [43] Zhou X, Lang W, Li Z, et al. Advance on the benefits of bioactive peptides from buckwheat[J]. Phytochemistry Reviews,2015,14(3):1−8.
    [44] 王毅, 齐红霞, 谷斌斌, 等. 苦荞麦蛋白提取物对2型糖尿病大鼠治疗作用研究[J]. 浙江预防医学,2009,21(1):4−5. [Wang Y, Qi H X, Gu B B, et al. Study on the therapeutic effect of tartary buckwheat protein extract on type 2 diabetic rats[J]. Preventive Medicine,2009,21(1):4−5.
    [45] 刘仁杰, 王月娇, 郭宏伟, 等. 荞麦蛋白复合物对糖尿病小鼠降血糖作用的研究[J]. 吉林农业大学学报,2009,31(1):102−104. [Liu R J, Wang Y J, Guo H W, et al. Study on the effect of buckwheat protein in lowering blood glucose of diabetic mice[J]. Journal of Jilin Agricultural University,2009,31(1):102−104.
    [46] Ninomiya K, Ina S, Hamada A, et al. Suppressive effect of the α-amylase inhibitor albumin from buckwheat(Fagopyrum esculentum Moench) on postprandial hyperglycaemia[J]. Nutrients,2018,10(10):1503. doi:  10.3390/nu10101503
    [47] 费烨, 王雍, 龚仕英, 等. 苦荞清蛋白酶解物对高糖诱导的hepg2细胞胰岛素抵抗的保护作用[J]. 食品科学, 2021, 42(1): 222-227.

    Fei Y, Wang Y, Gong S Y, et al. Protective effect of tartary buckwheat albumin hydrolysate on high glucose induced insulin resistance in HepG2 Cells[J/OL]. Food Science, 2021, 42(1): 222-227.
    [48] Liu Z H, Wakako I, Huang X X, et al. Research communication: A buckwheat protein product suppresses 1, 2-dimethylhydrazine-induced colon carcinogenesis in rats by reducing cell proliferation[J]. Journal of Nutrition,2001,131(6):1850−1853. doi:  10.1093/jn/131.6.1850
    [49] Świątecka D, Markiewicz L H, Wróblewska B. In vitro evaluation of the effect of the buckwheat protein hydrolysate on bacterial adhesion, physiology and cytokine secretion of Caco-2 cells[J]. Central European Journal of Immunology,2013,3(38):317−327.
    [50] Kayashita J, Shimaoka I, Nakajoh M, et al. Consumption of a buckwheat (Fagopyrum sp.) protein extract retards 7, 12-dimethylbenz (alpha) anthracene-induced mammary carcinogensis in rats[J]. Bioence Biotechnology & Biochemistry,1999,63(10):1837−1839.
    [51] Guo X N, Zhu K X, Zhang H, et al. Anti-tumor activity of a novel protein obtained from tartary buckwheat[J]. International Journal of Molecular Sciences,2010,11(12):5201−5211. doi:  10.3390/ijms11125201
    [52] Li Y Y, Zhang Z, Wang Z, et al. Rbti induces apoptosis in human solid tumor cell lines by loss in mitochondrial transmembrane potential and caspase activation[J]. Toxicology Letters,2009,189(2):166−175. doi:  10.1016/j.toxlet.2009.05.018
    [53] Brown D I, Griendling K K. Regulation of signal transduction by reactive oxygen species in the cardiovascular system[J]. Circulation Research,2015,116(3):531−549. doi:  10.1161/CIRCRESAHA.116.303584
    [54] 李红梅, 何晓兰, 张礼林, 等. 苦荞蛋白的分离及其体外抗氧化活性的研究[J]. 食品科技,2015,40(3):250−254. [Li H M, He X L, Zhang L L, et al. Isolation and antioxidant activity analysis in vitro of proteins from tartary buckwheat[J]. Food Science and Technology,2015,40(3):250−254.
    [55] Liu F, He C, Wang L, et al. Effect of milling method on the chemical composition and antioxidant capacity of tartary buckwheat flour[J]. International Journal of Food Science and Technology,2018,53(11):2457−2464. doi:  10.1111/ijfs.13837
    [56] 吴伟菁, 纪美茹, 李再贵. 不同苦荞蛋白酶解产物抗氧化活性研究[J]. 粮油食品科技,2018,26(5):6−10. [Wu W J, Ji M R, Li Z G. Antioxidant activity of different protein hydrolysates from tartary buckwheat[J]. Science and Technology of Cereals, Oils and Foods,2018,26(5):6−10.
    [57] 陈花, 张海悦, 王鹏. 苦荞蛋白酶解产物的抗氧化活性研究[J]. 食品研究与开发,2017,38(14):12−16. [Chen H, Zhang H Y, Wang P. Antioxidant activity of Fagopyrum tartaricum enzymolysis products[J]. Food Research and Development,2017,38(14):12−16. doi:  10.3969/j.issn.1005-6521.2017.14.004
    [58] Luo X Y, Fei Y, Xu Q Z, et al. Isolation and identification of antioxidant peptides from tartary buckwheat albumin(Fagopyrum tataricum Gaertn.) and their antioxidant activities[J]. Journal of Food Science,2020,85(3):611−617. doi:  10.1111/1750-3841.15004
    [59] Yu G Y, Wang F, Zhang B, et al. In vitro inhibition of platelet aggregation by peptides derived from oat(Avena sativa L.), highland barley(Hordeum vulgare Linn. var. nudum Hook. F.), and buckwheat(Fagopyrum esculentum Moench) proteins[J]. Food Chemistry,2016,194(1):577−586.
    [60] Jin H M, Wei P. Anti-fatigue properties of tartary buckwheat extracts in mice[J]. International Journal of Molecular Sciences,2011,12(8):4770−4780. doi:  10.3390/ijms12084770
    [61] Martínez Villaluenga C, Peñas E, Hernández-Ledesma B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods[J]. Food and Chemical Toxicology,2020,137:111178. doi:  10.1016/j.fct.2020.111178
    [62] 李玺, 薛文通. 小麦致敏蛋白及其过敏病症研究进展[J]. 食品科技,2016,41(8):147−152. [Li X, Xue W T. Research progress of wheat allergens and its allergy symptoms[J]. Food Science and Technology,2016,41(8):147−152.
    [63] 方玉梅, 谭萍, 周斯弼. 苦荞麦活性肽饮品抗疲劳及抗氧化功效研究[J]. 食品研究与开发,2017,38(24):187−191. [Fang Y M, Tan P, Zhou S B. Study on the anti-fatigue and anti-oxidation effects of buckwheat bioactive peptide beverage[J]. Food Research and Development,2017,38(24):187−191. doi:  10.3969/j.issn.1005-6521.2017.24.037
    [64] 阮景军. 苦荞麦胰蛋白酶抑制剂的分离纯化、基因克隆表达及其抗病虫害研究[D]. 雅安: 四川农业大学, 2011.

    Ruan J J. Study on isolation, purification, cloning, expression of trypsin inhibitor of tartary buckwheat and resistance to diseases and insect pests[D]. Ya’an: Sichuan Agricultural University, 2011.
    [65] 栗安之. 荞麦胰蛋白酶抑制剂对鸡肉肉糜凝胶特性的影响[D]. 太原: 山西大学, 2019.

    Li A Z. The effect of buckwheat tryp-sin inhibitor on the gelling properties of chicken meat gel[D]. Taiyuan: Shanxi University, 2019.
    [66] 高柳芳. 荞麦胰蛋白酶抑制剂亲和材料的制备及应用[D]. 太原: 山西大学, 2020.

    Gao L F. Preparation and application of buckwheat trypsin inhibitor affinity materials[D]. Taiyuan: Shanxi University, 2020.
    [67] 李霞. 荞麦胰蛋白酶抑制剂的固定化及缓释载体的制备[D]. 太原: 山西大学, 2019.

    Li X. Immobilization of buckwheat tryp-sin inhibitor and preparation of sustained-release carrier[D]. Taiyuan: Shanxi University, 2019.
    [68] 邓娇, 赵佳利, 张晓娜, 等. 荞麦种子过敏蛋白的研究进展[J]. 现代免疫学,2019,39(3):253−256. [Deng J, Zhao J L, Zhang X N, et al. Research progress of buckwheat seed allergic protein[J]. Current Immunology,2019,39(3):253−256.
    [69] 杨欢, 崔晓东, 王转花. 食品加工条件下tbt结构及致敏性的变化[C]//第四届泛环渤海生物化学与分子生物学会学术交流会论文集. 保定, 2013: 1.

    Yang H, Cui X D, Wang Z H. Changes of tbt structure and allergenicity under food processing conditions[C]// Proceedings of the 4th Pan-Rim Bohai Sea Society of Biochemistry and Molecular Biology Academic Exchange Conference. Baoding, 2013: 1.
  • 加载中
表(2)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  17
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 网络出版日期:  2021-08-02
  • 刊出日期:  2021-10-11

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升