食用煎炸油理化指标统计分析方法研究进展

李裕梅 唐润发 杜芳芳 曹雁平 王鑫

李裕梅,唐润发,杜芳芳,等. 食用煎炸油理化指标统计分析方法研究进展[J]. 食品工业科技,2021,42(7):416−426. doi:  10.13386/j.issn1002-0306.2020080262
引用本文: 李裕梅,唐润发,杜芳芳,等. 食用煎炸油理化指标统计分析方法研究进展[J]. 食品工业科技,2021,42(7):416−426. doi:  10.13386/j.issn1002-0306.2020080262
LI Yumei, TANG Runfa, DU Fangfang, et al. Research Progress of Statistical Analysis Methods for Physicochemical Parameters of Edible Frying Oil[J]. Science and Technology of Food Industry, 2021, 42(7): 416−426. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080262
Citation: LI Yumei, TANG Runfa, DU Fangfang, et al. Research Progress of Statistical Analysis Methods for Physicochemical Parameters of Edible Frying Oil[J]. Science and Technology of Food Industry, 2021, 42(7): 416−426. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020080262

食用煎炸油理化指标统计分析方法研究进展

doi: 10.13386/j.issn1002-0306.2020080262
基金项目: 北京市自然科学基金(9192008);北京市科技计划项目(Z171100001317004)
详细信息
    作者简介:

    李裕梅(1976−),女,博士,副教授,研究方向:机器学习与统计应用,E-mail:liwjyumei@163.com

    通讯作者:

    曹雁平(1961−),男,博士,教授,研究方向:食品化学与安全,E-mail:caoyp@th.btbu.edu.cn

  • 中图分类号: TS229

Research Progress of Statistical Analysis Methods for Physicochemical Parameters of Edible Frying Oil

  • 摘要: 煎炸食品在愉悦味蕾的同时,也面临着油种类的最优抉择和质量安全问题,众多学者在选择何种类型的油,以及煎炸的时间长短方面进行了研究。本文从统计学的角度出发,概述了常用统计分析方法在煎炸油理化指标数据分析中的研究进展。一是,表格分析方式,大多数是将多次重复实验的数据以均值加减标准差的形式放到表格里进行研究,而且分析较多的理化指标是酸值、脂肪酸和极性化合物这三个指标。二是,作图可视化方式:直条图、折线图和散点图;其中,直条图主要用来展现在不同煎炸油、不同煎炸时间、不同煎炸温度、不同加热功率等条件下理化指标的含量情况;折线图主要用来分析理化指标随着煎炸时间、煎炸温度、不同煎炸油、不同煎炸负荷下理化指标的变化情况;散点图主要用来分析理化指标受煎炸时间、煎炸次数、油样密度等的影响,以及理化指标相互之间的关系和理化指标在不同废弃油样中的分布情况等。三是,拟合方式:线性拟合和非线性拟合;其中,线性拟合主要用来分析理化指标随煎炸时间、煎炸次数、介电常数变化等的线性关系,以及用来分析理化指标和近红外光谱之间的线性关系,分析理化指标实测值和其他模型预测值之间的一致性等;非线性拟合主要涉及到多项式拟合、指数函数拟合和逻辑回归的拟合,用来分析某些理化指标随煎炸时间变化的复杂关系,以及根据理化指标将油进行好坏分类等。四是,理化指标间的相关性分析,绝大多数文献是通过计算指标间的皮尔逊相关系数进行的,少部分文献使用了指标间的线性或者非线性拟合方式来分析。五是,针对理化指标数据进行的方差分析,主要用于研究不同煎炸因素下理化指标的变化情况。六是,针对理化指标进行的主成分分析,主要用来分析各个理化指标对煎炸油质量监控的重要性程度等等。通过以上对于煎炸油理化指标的统计分析方法的进展描述,给研究者们提供对于研究方法和研究手段的选择提供思路。
  • 图  1  理化指标词云统计图

    Figure  1.  Word cloud of physicochemical parameters

    表  1  数据表格常用场景分类情况

    Table  1.   Classification of common scenarios in data tables

    实验种类分析方法文献常用指标权重(%)
    一种油的指标分析基于实验单一数据值表格分析[56,818]酸值、脂肪酸、极性化合物47.5
    基于均值加减标准差的数据值表格分析[1945]脂肪酸、极性化合物、过氧化值52.5
    多种油的对比分析基于实验单一数据值表格分析[10,4652]酸值、脂肪酸、过氧化值29.11
    基于均值加减标准差的数据值表格分析[10,2224,33, 35,3941,45,47,
    49,51,5460,6162]
    酸值、过氧化值、极性化合物、
    脂肪酸、生育酚、羟基价
    70.89
    下载: 导出CSV

    表  2  一种油中实验数据表格研究的理化指标

    Table  2.   Physicochemical parameters for the study of one kind of oil

    理化指标文献权重(%)
    酸值[813,17]16.70
    脂肪酸[5,6,10,11,15,17]14.29
    极性化合物[8,1112,1516]11.90
    过氧化值[8,13,1617]9.52
    羰基价[89]4.76
    碘值[13,17]4.76
    黏度[1516]4.76
    K值[13,17]4.76
    对苯胺值[15,37]4.76
    水分和油的含量[6,9,1415,18]11.90
    颜色、香味、硬度、弹性[10,1415]7.14
    维生素E[1011]4.76
    下载: 导出CSV

    表  3  一种油中以均值加减标准差的数据值形式的表格研究的理化指标

    Table  3.   Physicochemical parameters for the study of one kind of oil in the form of mean plus or minus standard deviations

    理化指标文献权重(%)
    脂肪酸[1924,26,29,3134,3639,41,44,58]50.00
    极性化合物[2526,2830,41,44,66]21.05
    过氧化值[21,32,37,4142,58,66]18.42
    酸值[21]2.63
    总酚量[23,27,32]7.89
    下载: 导出CSV

    表  4  多种油实验单一数据值表格研究的理化指标

    Table  4.   Physicochemical parameters for the study of various oils in the form of single data value

    理化指标文献权重(%)
    酸值[10,4648,61]21.74
    羰基价[46-48]13
    过氧化值[10,41,4748,58,61]26.09
    脂肪酸[10,4951,58]21.7
    维生素E[10,52]8.70
    碘值[50,52]8.70
    下载: 导出CSV

    表  5  多种油以均值加减标准差的数据形式的表格研究的理化指标

    Table  5.   Physicochemical parameters for the study of various oils in the form of mean plus or minus standard deviations

    理化指标文献权重(%)
    酸值[10,40,5354,6162]10.71
    过氧化值[10,41,47,54,6162]10.71
    羰基价[41,47,61]5.36
    煎炸物的色泽[44,54,61]5.36
    油的颜色[10,40,57,67]7.14
    碘值[61, 68]3.57
    极性化合物[10,41,4445,5456,5859,62]16.07
    生育酚含量[2224,39]7.14
    脂肪酸[2224,33,38,40,42,44,5962,69]23.21
    醛化合物[6061]3.57
    P-茴香氨值[61]1.79
    黏度[61]1.79
    共轭二烯值[62]1.79
    甘油三酯[69]1.79
    下载: 导出CSV

    表  6  直条图使用场景

    Table  6.   The common scene of straight bars

    常用场景文献权重(%)
    比较不同煎炸油下的各理化指标的含量[5,11,24,5152,60,69-71]28.13
    比较不同煎炸油和不同煎炸食品下的各理化指标的含量[70]3.13
    比较不同煎炸时间下的各理化指标[5,11,18,20,21,23,30,3536,5152,56,60,7172]46.88
    比较不同煎炸温度下的各理化指标的含量[18,32,58,7273]15.63
    煎炸油中理化指标含量与国家标准废弃值进行比较[16]3.13
    比较不同加热功率下的各理化指标的含量[36]3.13
    下载: 导出CSV

    表  7  折线图常用场景

    Table  7.   The common scene of line charts

    常用场景文献权重(%)
    理化指标随时间变化[11,18,1921,23,25,27,36,4647,55,5960,62,70,7381]73.53
    研究理化指标随煎炸温度的变化[32,79]5.88
    研究理化指标随煎炸次数的变化[33,37,51,68]11.76
    研究理化指标间的相对变化关系[56]2.94
    研究理化指标在不同煎炸油里的含量的变化关系[69]2.94
    不同煎炸负荷下理化指标的变化[25]2.94
    下载: 导出CSV

    表  8  散点图常用场景

    Table  8.   The common scene of scatter diagram

    常用场景文献权重(%)
    研究理化指标受煎炸时间的影响[5,9,11,19,21,25,34,48,49,64,76,82-85]44.12
    研究理化指标间的相关关系[6,37,54,77,86,87]17.65
    研究酸值、极性组分、羰基价和碘值受煎炸次数的影响[8]2.94
    研究理化指标受煎炸温度的影响[9,25,73,78]11.76
    研究介电增量Δε和介电损耗ε''受油样密度的影响[88]2.94
    研究极性化合物、过氧化值、茴香胺值和脂肪酸在不同废弃油样品中的分布[16]2.94
    模型预测的指标值和相应实验测试值的比较[44,83,84,86,87,89]17.65
    下载: 导出CSV

    表  9  线性拟合常用场景

    Table  9.   The common scene of linear fit

    常用场景案例
    理化指标随煎炸时间
    的线性变化关系
    文献[48]回归了过氧化值、酸值、极性化合物、介电常数和黏度随着煎炸时间变化的线性关系;
    文献[81]拟合了羰基价及过氧化值和煎炸时间的线性关系;文献[83]研究了油样的LF-NMR弛豫特性中,
    峰起时间和峰面积随着煎炸时间的变化关系。
    理化指标随煎炸次数
    的线性变化关系
    文献[8]研究了酸值、碘值、极性化合物和羰基价分别随煎炸次数而变化的线性关系;
    文献[37]研究了极性化合物与煎炸次数之间的线性关系。
    理化指标随介电常数
    的变化关系
    文献[28]研究了极性化合物和游离脂肪酸随着介电常数变化的线性关系
    某些理化指标相互
    之间线性相关关系
    文献[6]研究了极性甘油三酯与反式-9,10-环氧油酸甲酯的线性关系;文献[11]研究了几种油中TPC(极性化合物)
    与TGP(甘油三酯聚合物)、TPC及Ba P (苯并芘)含量关系、TPC与多环芳烃的含量关系。
    近红外光谱和理化
    指标之间的关系
    文献[12]研究了酸值、极性化合物和近红外光谱预测值之间的关系。
    理化指标实测值和某些模型对
    该指标的预测值之间的线性关系
    文献[87]研究了模型预测过氧化物、羰基价和极性化合物和实际测得的极性化合物之间的线性关系;
    文献[87]研究了实际测得的皂化值、碘值和模型预测的相应值之间的线性关系;
    下载: 导出CSV

    表  10  非线性拟合常用场景

    Table  10.   The common scene of non-linear fit

    常用场景案例
    多项式拟合文献[82]研究了羰基价、过氧化值分别随煎炸时间变化的关系;文献[83]研究了黏度、
    吸光值分别随煎炸时间变化的关系;文献[78]研究了丙烯酰胺分别随煎炸温度、煎炸时间变化的关系;
    文献[85]研究了K值、茴香胺值、碘值、极性化合物分别随煎炸时间变化的关系。
    指数函数拟合文献[25]研究了黏度和煎炸温度之间的关系;文献[85]研究了K值随煎炸时间变化的关系;
    文献[81]研究了运动黏度、极性化合物随煎炸时间变化的关系。
    逻辑回归文献[66]用逻辑回归根据P-茴香氨值、酸值、极性化合物、聚合三酰甘油、单体氧化三酰甘油、
    碘值等理化指标进行研究,将煎炸油分为质量好坏两大类,用以表示煎炸油的质量变化的可能性。
    下载: 导出CSV

    表  11  计算指标间相关性的方法

    Table  11.   The methods for calculating the correlation between parameters

    方法文献权重(%)
    通过计算指标间的皮尔逊相关系数[16,18,2627,48,49,5456,80,81,85]63
    通过指标间的线性或者非线性拟合[6,11,37,48,56,66,87]36.8
    下载: 导出CSV

    表  12  不同应用场景的统计方法参考

    Table  12.   Reference for statistical analysis methods in different application scenarios

    实验目的方法
    一种油的理化指标的变化情况基于实验单一数据值表格分析
    基于均值加减标准差的数据表格分析
    多种油进行对比分析基于实验单一数据值表格分析
    基于均值加减标准差的数据表格分析
    比较不同实验条件下的理化指标含量分布情况直条图
    研究理化指标随时间、温度、煎炸次数等的变化的趋势折线图
    研究理化指标随煎炸次数的变化趋势折线图
    研究理化指标受煎炸时间的影响散点图
    研究理化指标间的相关关系散点图
    找到理化指标和煎炸时间、煎炸温度以及煎炸次数之间的函数关系线性拟合
    非线性拟合
    找到理化指标之间的函数关系线性拟合
    非线性拟合
    指标间的相关性分析计算指标间的皮尔逊相关系数
    指标间的线性或者非线性拟合
    不同煎炸时间和不同煎炸油或不同煎炸时间和煎炸温度相结合对于煎炸质量水平是否存在显著性影响双因素方差分析
    研究某个煎炸实验条件的不同水平是否对煎炸过程中观测变量产生显著影响单因素方差分析
    验证多元回归模型的整体显著性方差分析
    将实验数据集简化,克服原始数据集的重叠性、相关性主成分分析
    下载: 导出CSV
  • [1] 田洪芸, 陆垣宏, 李恒,等. 我国食用植物油质量安全状况及监管现状分析[J]. 中国油脂,2019,10(16):5271−5275.
    [2] 王瑞元. 2018年我国油料油脂生产供应情况浅析[J]. 中国油脂,2019,44(6):1−5. doi:  10.3969/j.issn.1003-7969.2019.06.001
    [3] Gertz Christian, Sabine Klostermann, S Parkash Kochhar. Testing and comparing oxidative stability of vegetable oils and fats at frying temperature[J]. European Journal of Lipid Science and Technology,2000,102:8−9, 543-551.
    [4] Bard L J, Farkas B E. A method for determining convective heat transfer coefficient during immersion frying[J]. J Food Process Eng,1999,22:201−214. doi:  10.1111/j.1745-4530.1999.tb00481.x
    [5] Nayak P K, Dash U, Rayaguru K, et al. Physio-chemical changes during repeated frying of cooked oil: A review[J]. Journal of Food Biochemistry,2016,40(3):371−390. doi:  10.1111/jfbc.12215
    [6] Kalogeropoulos N, Salta F N, Chiou A, et al. Formation and distribution of oxidized fatty acids during deep - and pan-frying of potatoes[J]. Eur J Lipid Sci Technol,2007,109:1111−1123. doi:  10.1002/ejlt.200700007
    [7] 吴时敏. 煎炸用油和油炸食品的质量安全问题及对策[J]. 食品科学技术学报,2015,33(1):6−12. doi:  10.3969/j.issn.2095-6002.2015.01.002
    [8] 蒋甜燕, 魏为连. 煎炸过程中大豆油品质变化研究[J]. 安徽农业科学,2015,43(13):279−281. doi:  10.3969/j.issn.0517-6611.2015.13.096
    [9] 沈正贤, 张燕玲, 浦宏娣, 等. 煎炸油品质测定及测试仪的研究[J]. 北京农业工程大学学报,1990,10(1):70−76.
    [10] 章海风, 周晓燕, 李辉, 等. 3种食用油在油条煎炸过程中的品质变化比较[J]. 食品科学,2013,34(22):160−164.
    [11] 安柯静. 油脂煎炸过程极性组分与甘油三酯聚合物及其它组分的关联性研究[D]. 郑州: 河南工业大学, 2018.
    [12] Jinkui Ma, Han Z hang, Tomohiro Tuchiya, et al. Rapid determination of degradation of frying oil using near-infrared spectroscopy[J]. Food Science and Technology Research,2014,20(2):217−223. doi:  10.3136/fstr.20.217
    [13] Giuffrè A M, Zappia C, Capocasale M. Effects of high temperatures and duration of heating on olive oil properties for food use and biodiesel production[J]. Journal of the American Oil Chemists\" Society,2017,94(6):819−830. doi:  10.1007/s11746-017-2988-9
    [14] Adebukola T Omidiran, Olajide P Sobukola, Silifat A Sanni, et al. Evaluation of some quality parameters of cassava starch and soy protein isolate matrices during deep fat frying in soybean oil[J]. Food Science Nutrition,2019,7:656−666. doi:  10.1002/fsn3.904
    [15] DéboraRavelli, Matsuoka C R, Regina Célia Della Modesta, et al. Determination of deep frying soybean oil disposal point by a sensory method[J]. Journal of the American Oil Chemists Society,2010,87(5):515−520. doi:  10.1007/s11746-009-1524-y
    [16] Fatemeh Esfarjani, Khadijeh Khoshtinat, Aziz Zargaraan, et al. Evaluating the rancidity and quality of discarded oils in fast food restaurants[J]. Food Science Nutrition,2019,7:2302−2311. doi:  10.1002/fsn3.1072
    [17] Giuffrè Angelo Maria, Capocasale M, Zappia C, et al. Influence of high temperature and duration of heating on the sunflower seed oil properties for food use and bio-diesel production[J]. Journal of Oleo Science,2017,66(11):1193−1205. doi:  10.5650/jos.ess17109
    [18] Millin T M, Medina-Meza I G, Walters B C, et al. Frying oil temperature: impact on physical and structural properties of french fries during the par and finish frying processes[J]. Food & Bioprocess Technology,2016,9(12):1−12.
    [19] E Aydınkaptan, I BarutçuMazı. Monitoring the physicochemical features of sunflower oil and French fries during repeated microwave frying and deep-fat frying[J]. Grasas Y Aceites,2017,68(2):e202.
    [20] Ying Liu, Jinwei Li, Yajun Cheng, et al. Effect of frying oils’ fatty acid profile on quality, free radical and volatiles over deep-frying process: A comparative study using chemometrics[J]. LWT-Food Science and Technology,2019,101:331−341. doi:  10.1016/j.lwt.2018.11.033
    [21] Nancy Idun-Acquah, George Y Obeng, Ebenezer Mensah. Repetitive use of vegetable cooking oil and effects on physico-chemical properties–case of frying with redfish (Lutjanus fulgens)[J]. Science and Technology,2016,6(1):8−14.
    [22] Aladedunye F A, Przybylski R. Degradation and nutritional quality changes of oil during frying[J]. Journal of the American Oil Chemists' Society,2009,86(2):149−156. doi:  10.1007/s11746-008-1328-5
    [23] Ruhollah Sayyad. Effects of deep-fat frying process on the oil quality during Frenchfries preparation[J]. Journal of Food Science and Technology,2017,54(8):2224−2229. doi:  10.1007/s13197-017-2657-x
    [24] Ki Seon Yu, Hyunnho Cho, KeumTaek Hwang. Physicochemical properties and oxidative stability of frying oilsduring repeated frying of potato chips[J]. Food Science & Biotechnology,2018,27(3):651−659.
    [25] Xu Li, Xiaojing Wu, Ruijie Liu, et al. Effect of frying conditions on fatty acid profile and total polar materials via viscosity[J]. Journal of Food Engineering,2015,166:349−355. doi:  10.1016/j.jfoodeng.2015.07.007
    [26] Magda Aniołowska, Agnieszka Kita. The effect of frying on glycidyl esters content in palm oil[J]. Food Chemistry,2016,203:95−103. doi:  10.1016/j.foodchem.2016.02.028
    [27] JuHee Song, Mi-Ja Kim, Young-Jun Kim, et al. Monitoring changes in acid value, total polar material, and antioxidant capacity of oils used for frying chicken[J]. Food Chemistry,2017,220:306−312. doi:  10.1016/j.foodchem.2016.09.174
    [28] Nur Ul Atikah Ibrahim, Samsuzana Abd Aziz, Norhashila Hashim, et al. Dielectric spectroscopy of palm olein during batch deep frying and their relation with degradation parameters[J]. Journal of Food Science,2019,84(4):792−797. doi:  10.1111/1750-3841.14436
    [29] S Feitosa, E F Boffo, C S C Batista, et al. A real case study on the physicochemical changes in crude palm oil (Elaeis guineensis) during the deep-frying of akara, traditional cowpea-paste balls, in Brazil[J]. Grasas Y Aceites,2019,70(2):e305. doi:  10.3989/gya.0703182
    [30] Chen Wang, Guanqun Su, Xin Wang, et al. Rapid assessment of deep frying oil quality as well as water and fat contents in french fries by low-field nuclear magnetic resonance[J]. J Agric Food Chem,2019,67:2361−2368.
    [31] Márcio Antônio Mendonça, Wilma Maria Coelho Araújo, Luiz AntônioBorgo, et al. Deep-frying oil: Heat-induced changes[J]. Journal of Culinary Science & Technology,2015,13:116−132.
    [32] Iness Jabri Karoui, Wissal Dhifi, Meriam Ben Jemia, et al. Thermal stability of corn oil flavoured with Thymus capitatus under heating and deep-frying conditions[J]. Journal of Science Food Agriculture,2011,91:927−933. doi:  10.1002/jsfa.4267
    [33] Nuri Kim, KiSeon Yu, Jaecheol Kim. Chemical characteristics of potato chips fried in repeatedly used oils[J]. Journal of Food Measurement and Characterization,2018,12:1863−1871. doi:  10.1007/s11694-018-9800-x
    [34] Ying Liu, Yuanpeng Wang, Peirang Cao, et al. Combination of gas chromatography-mass spectrometry and electron spin resonance spectroscopy for analysis of oxidative stability in soybean oil during deep-frying process[J]. Food Analytical Methods,2018,11:1485−1492. doi:  10.1007/s12161-017-1132-7
    [35] Hamid Reza Tavakoli, Mehdi Naderi, Seid Mahdi Jafari, et al. Postmarketing surveillance of the oxidative stability for cooking oils, frying oils, and vanaspati supplied in the retail market[J]. Food Science Nutrition,2019,7:1455−1465. doi:  10.1002/fsn3.982
    [36] Aydinkaptan E, Mazi B G, Barutcu Mazi I. Microwave heating of sunflower oil at frying temperatures: Effect of power levels on physicochemical properties[J]. Journal of Food Process Engineering,2017,40:e12402. doi:  10.1111/jfpe.12402
    [37] Abenoza, María, Patricia D L H, Benito M, et al. Changes in the physicochemical and nutritional parameters of picual and arbequina olive oils during frying[J]. Journal of Food Processing and Preservation,2016,40(3):353−361. doi:  10.1111/jfpp.12612
    [38] Fatma Nur Arslan, Ayça Nesibe ŞapçI, Fatma Duru, et al. A study on monitoring of frying performance and oxidative stability of cottonseed and palm oil blends in comparison with original oils[J]. International Journal of Food Properties,2017,20(3):704−717. doi:  10.1080/10942912.2016.1177544
    [39] Ali M A, Najmaldien A H A, Latip R A, et al. Effect of heating at frying temperature on the quality characteristics of regular and high-oleic acid sunflower oils[J]. Acta Scientiarum Polonorum, Technologia Alimentaria,2013,12(2):159−167.
    [40] Ibtissem Ben Hammouda, Akram Zribi, Amir Ben Mansour, et al. Effect of deep-frying on 3-MCPD esters and glycidyl esters contents and quality control of refined olive pomace oil blended with refined palm oil[J]. European Food Research Technology,2017,243:1219−1227. doi:  10.1007/s00217-016-2836-4
    [41] Delfanian M, Kenari R E, Sahari M A. Effect of natural extracted antioxidants from Eriobotrya japonica (Lindl.) fruit skin on thermo oxidative stability of soybean oil during deep frying[J]. International Journal of Food Properties,2016,19(5):958−973. doi:  10.1080/10942912.2015.1041039
    [42] Raza S A, Rashid A, William J, et al. Evaluation of oxidative stability of sunflower oil at frying temperature in presence of butylated hydroxytoluene and methanolic extracts of medicinally important plants of Pakistan[J]. International Food Research Journal,2014,21(1):331−334.
    [43] Ying Liu, Yuanpeng Wang, Peirang Cao, et al. Degradation of edible oil during deep-frying process by electron spin resonance spectroscopy and physicochemical appreciation[J]. European Journalof Lipid Science Technology,2018,120:1700376. doi:  10.1002/ejlt.201700376
    [44] Picouet P A, Gou P, Pruneri V, et al. Implementation of a quality by design approach in the potato chips frying process[J]. Journal of Food Engineering,2019,260:22−29. doi:  10.1016/j.jfoodeng.2019.04.013
    [45] Ibtissem Ben Hammouda, Gloria Márquez-Ruiz, Francisca Holgado, et al. Comparative study of polymers and total polar compounds as indicators of refined oil degradation during frying[J]. European Food Research and Technology,2019,245(5):967−976. doi:  10.1007/s00217-018-3202-5
    [46] 蒋晓菲, 杨叶波, 金青哲, 等. 5种精制食用油在煎炸薯条过程中的品质变化[J]. 中国油脂,2014,39(8):47−51.
    [47] 钟宏星, 张晶, 梁伟健, 等. 煎炸时间对不同食用油脂品质的影响[J]. 食品安全质量检测学报,2017,8(12):4694−4697. doi:  10.3969/j.issn.2095-0381.2017.12.032
    [48] 郝丹辉, 梁永铭, 茅春辉, 等. 食用油脂煎炸过程中理化指标分析及其在监管中的应用[J]. 工业微生物,2017,47(2):61−67. doi:  10.3969/j.issn.1001-6678.2017.02.011
    [49] Shyu Shyi-Liang, Lung-Bin Hau, Lucy Sun Hwang. Effect of vacuum frying on the oxidative stability of oils[J]. Journal of the American Oil Chemists' Society,1998,75(10):1393−1398. doi:  10.1007/s11746-998-0188-3
    [50] Roiaini M, Ardiannie T, Norhayati H. Physicochemical properties of canola oil, olive oil and palm olein blends[J]. International Food Research Journal,2015,22(3):1227−1233.
    [51] Nikolaos K Andrikopoulos, George V Z Dedoussis, Ageliki Falirea, et al. Deterioration of natural antioxidant species of vegetable edible oils during the domestic deep-frying and pan-frying of potatoes[J]. International Journal of Food Sciences and Nutrition,2002,53:351−363. doi:  10.1080/09637480220138098
    [52] Durmaz F, Talpur M Y. Oxidation on the stability of canola oil blended with stinging nettle oil at frying temperature[J]. International Journal of Food Properties,2015,18(7):1402−1415. doi:  10.1080/10942912.2014.917097
    [53] 刘玉兰, 石龙凯, 陈梦莹, 等. 3种油脂在煎炸过程中维生素E组分及理化指标变化研究[J]. 中国油脂,2016,41(4):32−36. doi:  10.3969/j.issn.1003-7969.2016.04.008
    [54] 曹亮. 茶油煎炸后品质变化及评价[D]. 哈尔滨: 东北农业大学, 2015.
    [55] Xiaodan Li, Jinwei Li, Yong Wang, et al. Effects of frying oils’ fatty acids profile on the formation of polar lipids components and their retention in French fries over deep-frying process[J]. Food Chemistry,2017,237:98−105. doi:  10.1016/j.foodchem.2017.05.100
    [56] Azmil Haizam Ahmad Tarmizi, Elina Hishamuddin, Raznim ArniAbd Razak. Impartial assessment of oil degradation through partitioning of polar compounds in vegetable oils under simulated frying practice of fast food restaurants[J]. Food Control,2019,96:445−455. doi:  10.1016/j.foodcont.2018.10.010
    [57] M Uscanga-Ramos, A Ramı´rez-Martı´nez, M A Garcı´a-Alvarado, et al. Effect of repeated frying on the physical characteristics, the formation of acrylamide and oil uptake of tortilla chips subjected to pre-drying treatment[J]. Journal of Food Science Technology,2019,56(4):1708−1714. doi:  10.1007/s13197-019-03594-z
    [58] Xu Li, Gangcheng Wu, Fan Yang, et al. Influence of fried food and oil type on the distribution of polar compounds in discarded oil during restaurant deep frying[J]. Food Chemistry,2019,272:12−17. doi:  10.1016/j.foodchem.2018.08.023
    [59] Carla S P Santos, Lucı´a Molina Garcı´, Rebeca Cruz, et al. Impact of potatoes deep-frying on common monounsaturated-rich vegetable oils: A comparative study[J]. Journal of Food Scienceand Technology,2019,56(1):290−301. doi:  10.1007/s13197-018-3489-z
    [60] Wang S N, Sui X N, Wang Z J, et al. Improvement in thermal stability of soybean oil by blending with camellia oil during deep fat frying[J]. European Journal of Lipid Science and Technology,2016,118(4):524−531. doi:  10.1002/ejlt.201500085
    [61] 慕鸿雁, 郑琦. 3种食用油在薯条煎炸过程中的品质变化[J]. 食品科学,2012,33(19):168−171.
    [62] 李杨, 马文君, 齐宝坤, 等. 调和大豆油煎炸过程品质变化的研究[J]. 食品工业,2015,36(6):21−24.
    [63] 王进英, 钟海雁, 周波. 油脂在深度煎炸过程中发生的化学反应及其主要产物[J]. 中国油脂,2015,40(11):37−43. doi:  10.3969/j.issn.1003-7969.2015.11.008
    [64] 张铁英, 姜元荣, 陈雅琼. 煎炸油在煎炸过程中脂肪酸组成的变化[J]. 食品科学,2013,34(5):132−136.
    [65] 夏季亮, 陈玎玎, 吴晶. 煎炸时间与煎炸温度对花生油脂肪酸组成的影响[J]. 中国油脂,2013,38(7):76−81. doi:  10.3969/j.issn.1003-7969.2013.07.020
    [66] Gertz C, Aladedunye F, Matthäus B. A new analytical and statistical approach to predict the sensory properties of deep frying fats and oils to determine the point of discard during processing[J]. European Journal of Lipid Science and Technology,2017:e201600393.
    [67] Laranjeira Cristina, C Ventura, S M C S Bermejo, et al. Used food oils: Physical-chemical indicators of quality degradation[J]. Baltic Conference on Food Science and Technology,2017,11:154−159.
    [68] Ortiz Rojas, Yamid, Liliam Palomeque. A new method for oxidation degree estimation: Polynuclear compounds as an indicator of edible oil degradation[J]. Food studies: An Interdisciplinary Journal,2017,7(3):13−21. doi:  10.18848/2160-1933/CGP/v07i03/13-21
    [69] Zribi A, Jabeur H, Flamini G, et al. Quality assessment of refined oil blends during repeated deep frying monitored by SPME-GC-EIMS, GC and chemometrics[J]. International Journal of Food Science & Technology,2016,51(7):1594−1603.
    [70] 卫星华, 董曼曼, 李涛, 等. 影响煎炸油中极性组分含量的研究[J]. 食品安全质量检测学报,2018,9(7):1660−1664. doi:  10.3969/j.issn.2095-0381.2018.07.033
    [71] 周雅琳, 周令国, 郑连姬, 冯璨, 等. 食用油煎炸过程中影响极性成分生成因素的研究[J]. 中国油脂,2008,33(2):70−72. doi:  10.3321/j.issn:1003-7969.2008.02.022
    [72] Nomali Ziphorah Ngobese, Tilahun Seyoum Workneh, Muthulisi Siwela. Effect of low-temperature long-time and high-temperature short-time blanching and frying treatments on the French fry quality of six Irish potato cultivars[J]. Journal of Food Science Technology,2017,54(2):507−517. doi:  10.1007/s13197-017-2495-x
    [73] Arias-Mendez A, Warning A, Datta A K, et al. Quality and safety driven optimal operation of deep-fat frying of potato chips[J]. Journal of Food Engineering,2013,119(1):125−134. doi:  10.1016/j.jfoodeng.2013.05.001
    [74] Touffet M, Patsioura A, Ziaiifar A M, et al. Online reconstruction of oil oxidation kinetics and reaction schemes during deep-frying by deconvolution of ATR-FTIR spectra[J]. Journal of Food Engineering, Journal of Food Engineering,2018,224:1−16.
    [75] 郭锐, 庞敏, 操丽丽, 等. 茶籽油煎炸过程中的品质变化研究[J]. 安徽农业科学,2017,45(11):75−79. doi:  10.3969/j.issn.0517-6611.2017.11.023
    [76] 翟金玲, 陈季旺, 夏文水. 加热温度及时间对食用煎炸油品质的影响[J]. 食品安全质量检测学报,2015,6(8):3247−3254.
    [77] Liu M, Xie S, Ge J, et al. A microfluidic system for assessing frying oil quality[C]// 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2016.
    [78] Santina Romani, Mara Bacchiocca, Pietro Rocculi, et al. Effect of frying time on acrylamide content and quality aspects of French fries[J]. European Food Research Technology,2008,226:555−560. doi:  10.1007/s00217-007-0570-7
    [79] Pavlovska G, Shurkova N, Jankuloska V. Oxidative stability of refined sunflower oil at room temperature and during conventional frying[J]. Journal of Faculty of Food Engineering,2017,16(1):29−33.
    [80] R Bou, J A Navas, A Tres, et al. Quality assessment of frying fats and fried snacks during continuous deep-fat frying at different large-scale producers[J]. Food Control,2012,27:254e267.
    [81] 陈锋亮, 魏益民, 钟耕. 大豆油高温煎炸质变过程的研究[J]. 中国油脂,2006,31(8):19−22. doi:  10.3321/j.issn:1003-7969.2006.08.006
    [82] 常明, 刘睿杰, 金青哲, 等. 大豆油煎炸过程理化指标与煎炸时间相关性研究[J]. 中国油脂,2014(4):93−95, 96.
    [83] 王欣, 夏义苗, 史然, 等. 基于LF-NMR及主成分回归分析的油脂煎炸品质预测[J]. 中国食品学报,2015,15(4):155−163.
    [84] Franklin E M E, Pushpadass H A, Neethu K C, et al. Modeling the kinetics of physicochemical and textural qualities of pantoa (indian dairy dessert) during deep-fat frying[J]. Journal of Food Processing & Preservation,2017,41(2):1−10.
    [85] 夏义苗, 王欣, 毛锐, 等. 基于理化指标及主成分分析的葵花籽油品质综合评价指标的建立[J]. 分析测试学报,2015,34(9):999−1007. doi:  10.3969/j.issn.1004-4957.2015.09.004
    [86] Yungang Shen, Shunsheng Chen, Rui Du, et al. Rapid assessment of the quality of deep frying oils used by street vendors with Fourier transform infrared spectroscopy[J]. Food Measure,2014,8:336−342. doi:  10.1007/s11694-014-9194-3
    [87] Xu L, Zhu X, Yu X, et al. Rapid and simultaneous determination of the iodine value and saponification number of edible oils by ftir spectroscopy: IV and SN determination of edible oils by FTIR[J]. European Journal of Lipid Science & Technology,2018,120(4):1700396.
    [88] Yang J, Zhao KS, He YJ. Quality evaluation of frying oil deterioration by dielectric spectroscopy[J]. Journal of Food Engineering, 2016, 180: 69−76.
    [89] ShahidiNoghabi M, Kaviani M, Niazmdand R. Modeling of oxidation stability of canola oil using artificial neural networks during deep fat frying of potatoes[J]. Journal of Food Processing and Preservation,2015,39(6):1006−1015. doi:  10.1111/jfpp.12314
  • 加载中
图(1) / 表(12)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  6
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 网络出版日期:  2021-01-28
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回

    重要通知

    4月19-23日刊社在上海举办第四届食品科技创新论坛,届时编辑部电话无人接听,敬请谅解。