茶多酚对馒头品质的影响及机理初探

陈南 陈龙 何强 孙群 曾维才

陈南,陈龙,何强,等. 茶多酚对馒头品质的影响及机理初探[J]. 食品工业科技,2021,42(20):23−31. doi:  10.13386/j.issn1002-0306.2020080247
引用本文: 陈南,陈龙,何强,等. 茶多酚对馒头品质的影响及机理初探[J]. 食品工业科技,2021,42(20):23−31. doi:  10.13386/j.issn1002-0306.2020080247
CHEN Nan, CHEN Long, HE Qiang, et al. Effects of Tea Polyphenols on the Quality of the Steamed Bun and Its Mechanism[J]. Science and Technology of Food Industry, 2021, 42(20): 23−31. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080247
Citation: CHEN Nan, CHEN Long, HE Qiang, et al. Effects of Tea Polyphenols on the Quality of the Steamed Bun and Its Mechanism[J]. Science and Technology of Food Industry, 2021, 42(20): 23−31. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080247

茶多酚对馒头品质的影响及机理初探

doi: 10.13386/j.issn1002-0306.2020080247
基金项目: 国家自然科学基金(31801548);国家重点研发计划(2019YFE0103800)
详细信息
    作者简介:

    陈南(1996−),男,博士研究生,研究方向:食品科学,E-mail:1197421575@qq.com

    通讯作者:

    曾维才(1986−),男,博士,副教授,研究方向:食品化学,E-mail:weicaizeng@qq.com

  • 中图分类号: TS231

Effects of Tea Polyphenols on the Quality of the Steamed Bun and Its Mechanism

  • 摘要: 探究茶多酚对馒头品质的影响并初步分析其分子作用机理。系统观察了茶多酚对馒头比容、质构、硬化速度及α-淀粉含量的影响;测定了茶多酚对淀粉的碘结合能力、溶解度、膨胀势以及热特性的影响;采用分子动力学模拟,探究了茶多酚与淀粉分子的相互作用。结果表明,茶多酚能够显著影响馒头的比容和质构,将硬化速度由195 g/h降低至138 g/h,并提高其α-淀粉含量;茶多酚的添加可降低淀粉的碘结合能力,提高溶解度(8.3%~38.1%)和膨胀势(11.4%~13.8%),降低糊化峰值温度(62.21~53.57 ℃)以促进淀粉的糊化,并延缓淀粉的老化;茶多酚主要通过氢键(最高占比氢键4GA_12@O2:EGCG_1@H18;占比5.6%)与淀粉发生分子相互作用,进而改变淀粉分子的空间构型,影响其理化特性。研究结果表明,茶多酚可以改变淀粉的理化特性和品质特性,具有作为新型淀粉改良剂的潜在价值。
  • 图  1  茶多酚对馒头比容的影响

    Figure  1.  Effect of TP on the specific volume of steamed bun

    图  2  茶多酚对馒头的(a)硬化速度及(b)α-淀粉含量的影响

    Figure  2.  Effect of TP on(a)hardening rate and(b)α-starch content of steamed bread

    图  3  茶多酚对淀粉碘结合能力的影响

    Figure  3.  Effect of TP on the iodine binding power of starch

    图  4  茶多酚对淀粉(a)溶解度和(b)膨胀势的影响

    Figure  4.  Effect of TP on the (a) solubility and (b) swelling power of starch

    图  5  分子模型

    Figure  5.  Molecular model

    注:(a)短链葡萄糖;(b)表没食子儿茶素没食子酸酯;(c)水溶剂盒子。

    图  6  SGS和EGCG的相互作用轨迹

    Figure  6.  Interaction trajectory between EGCG and SGS

    注:0GA是淀粉链起始的葡萄糖残基;4GA是淀粉链中间的葡萄糖残基;ROH是淀粉链末端的游离羟基。

    图  7  模拟体系的评价

    Figure  7.  Evaluation of simulation system

    注:(A)质心距离和(B)RMSD;1 ai = 1×10−10 m。

    图  8  EGCG对SGS空间构型的影响

    Figure  8.  Effect of EGCG on the spatial configuration of SGS

    注:(a)未添加EGCG;(b)添加EGCG。

    表  1  茶多酚对馒头质构的影响

    Table  1.   Effect of TP on the texture properties of steamed bun

    茶多酚添加量(%)
    012345
    硬度(g)1212.42 ± 9.24a1101.16 ± 18.51b1099.12 ± 15.12bc1017.48 ± 13.12d1001.04 ± 10.23de889.46 ± 13.81e
    黏度5.07 ± 0.98e10.2 ± 1.61de13.16 ± 0.78d20.24 ± 0.94c24.69 ± 1.64b35.15 ± 0.23a
    胶粘性1130.77 ± 13.48a982.885 ± 12.91b942.75 ± 8.52c807.37 ± 19.23de820.12 ± 15.22d799.00 ± 6.29de
    咀嚼性877.66 ± 5.24a810.33 ± 17.11b767.67 ± 10.64c712.49 ± 13.10d750.17 ± 19.02cd644.33 ± 7.12e
    注:每个值表示为平均值±标准差。同一行中不同的上标字母表示数据差异有统计学意义(P<0.05)。
    下载: 导出CSV

    表  2  茶多酚对淀粉糊化特性和老化特性的影响

    Table  2.   Effect of TP on the gelatinization and retrogradation of starch

    茶多酚
    添加量(%)
    糊化特性老化特性(5 d)
    起始温度(°C)峰值温度(°C)终值温度(°C)糊化焓(J/g)回生焓(J/g)回生率(%)
    056.29±0.20a62.21±0.10a67.10±0.38a17.70±0.10a8.36±0.13a47.21±0.24a
    552.01±0.31b58.57±0.11b64.37±0.12b12.83±0.43b3.18±0.42c24.79±0.18c
    1049.65±0.15c56.07±0.16bc62.40±0.01bc11.19±0.16bc1.07±0.20d9.56±0.21d
    2047.64±0.20cd53.57±0.31c61.34±0.22c1.99±0.27dn.dn.c
    注:每个值表示为平均值±标准差;同一列中不同的上标字母表示数据有统计学意义(P<0.05);n.d代表数值无法测量;n.c代表无法计算。
    下载: 导出CSV

    表  3  未添加EGCG的SGS分子内氢键分布情况

    Table  3.   Intramolecular hydrogen bonds within SGS without EGCG

    氢键受体氢键供体帧数
    占比(%)
    受体分子受体原子供体分子供体原子
    SGS4GA_10@O2SGS4GA_9@H3O39619.8
    SGS4GA_9@O2SGS4GA_8@H3O31815.9
    SGS4GA_11@O2SGS4GA_10@H3O24212.1
    SGS4GA_6@O2SGS4GA_5@H3O1929.6
    SGS4GA_5@O2SGS4GA_4@H3O1698.5
    SGS4GA_3@O2SGS4GA_2@H3O1577.9
    SGS0GA_13@O2SGS4GA_12@H3O1547.7
    SGS4GA_9@O3SGS4GA_10@H2O1527.6
    SGS4GA_8@O2SGS4GA_7@H3O1447.2
    SGS4GA_4@O2SGS4GA_3@H3O1366.8
    SGS4GA_12@O2SGS4GA_11@H3O1316.6
    SGS4GA_7@O2SGS4GA_6@H3O1226.1
    SGS4GA_4@O3SGS4GA_5@H2O884.4
    注:SGS为短链葡萄糖。0GA代表SGS链首的葡萄糖残基,4GA代表SGS中间的葡萄糖残基。0GA和4GA后的数字表示分子中的残基序列号。@符号后的H3O(H2O)和O3(O2)分别表示SGS在力场中的氢原子和氧原子。仅统计帧数占比超过4%的氢键,其他不包括在表中。
    下载: 导出CSV

    表  4  添加EGCG组的SGS分子内氢键分布情况

    Table  4.   Intramolecular hydrogen bonds within SGS with EGCG

    氢键受体氢键供体帧数
    占比(%)
    受体分子受体原子供体分子供体原子
    SGS4GA_13@O2SGS4GA_12@H3O37418.7
    SGS4GA_12@O2SGS4GA_11@H3O22311.2
    SGS4GA_10@O2SGS4GA_9@H3O21810.9
    SGS4GA_9@O2SGS4GA_8@H3O21310.7
    SGS4GA_6@O2SGS4GA_5@H3O20610.3
    SGS4GA_11@O2SGS4GA_10@H3O1919.6
    SGS4GA_7@O2SGS4GA_6@H3O1889.4
    SGS4GA_5@O2SGS4GA_4@H3O1758.8
    SGS4GA_4@O2SGS4GA_3@H3O1738.7
    SGS4GA_8@O2SGS4GA_7@H3O1728.6
    SGS4GA_11@O6SGS4GA_10@H6O1346.7
    SGS4GA_12@O2SGS4GA_1@H181125.6
    SGS4GA_13@O2SGS4GA_1@H16894.5
    SGS4GA_10@O6SGS4GA_11@H6O874.4
    SGS4GA_8@O6SGS4GA_9@H6O814.1
    注:SGS为短链葡萄糖。0GA代表SGS链首的葡萄糖残基,4GA代表SGS中间的葡萄糖残基。0GA和4GA后的数字表示分子中的残基序列号。@符号后的H3O(H6O、H16及H18)和O2(O6)分别表示SGS在力场中的氢原子和氧原子。仅统计帧数占比超过4%的氢键,其他不包括在表中。
    下载: 导出CSV

    表  5  SGS和EGCG之间的分子间氢键

    Table  5.   Intermolecular hydrogen bonds between SGS and EGCG

    氢键受体氢键供体帧数占比(%)
    受体分子受体原子供体分子供体原子
    SGS4GA_12@O2EGCGEGCG_1@H181125.6
    SGS4GA_13@O2EGCGEGCG_1@H16894.5
    SGS4GA_11@O6EGCGEGCG_1@H16412.1
    SGS4GA_11@O6EGCGEGCG_1@H18211.1
    EGCGEGCG_1@O11SGSROH_2@HO1191.0
    SGS4GA_9@O6EGCGEGCG_1@H17180.9
    SGS4GA_8@O6EGCGEGCG_1@H16160.8
    SGS4GA_11@O6EGCGEGCG_1@H4150.8
    SGS4GA_12@O6EGCGEGCG_1@H4130.7
    EGCGEGCG_1@O11SGS4GA_10@H6O140.7
    EGCGEGCG_1@O14SGS4GA_12@H3130.7
    EGCGEGCG_1@O8SGS4GA_11@H6O120.6
    SGS4GA_9@O6EGCGEGCG_1@H16120.6
    SGS4GA_11@O4EGCGEGCG_1@H18110.6
    注:SGS为短链葡萄糖;EGCG为表没食子儿茶素没食子酸酯。4GA代表SGS中间的葡萄糖残基,ROH代表SGS链尾的游离羟基。4GA(0GA及EGCG)后的数字表示分子中的残基序列号。@符号后的H6O(HO1, H3, H4, H16, H17, H18)和O2(O4, O6, O8, O11, O14)分别代表SGS或EGCG在力场中的氢原子和氧原子。仅统计占比超过0.5%的分子间氢键,其他不在表内。
    下载: 导出CSV
  • [1] 曾铭, 李蟠莹, 胡鹏, 等. 多酚对淀粉理化性质影响的研究进展[J]. 食品工业科技,2018,39(22):334−340. [Zeng M, Li P Y, Hu P, et al. Research progress on the effects of polyphenols on the physicochemical properties of starch[J]. Science and Technology of Food Industry,2018,39(22):334−340.
    [2] Bordenave N, Hamaker B R, Ferruzzi M G. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods[J]. Food and Function,2014,5:18−34. doi:  10.1039/C3FO60263J
    [3] Chou S R, Meng X J, Cui H J, et al. Rheological and pasting properties of maize, wheat and rice starch as affected by apple polyphenols[J]. International Journal of Food Properties,2019,22(1):1786−1798. doi:  10.1080/10942912.2019.1671452
    [4] Feng M, Yu L, Zhu P, et al. Development and preparation of active starch films carrying tea polyphenol[J]. Carbohydrate Polymers,2018,196:162−167. doi:  10.1016/j.carbpol.2018.05.043
    [5] Rezapour N, Rasekh B, Mofradnia S R, et al. Molecular dynamics studies of polysaccharide carrier based on starch in dental cavities[J]. International Journal of Biological Macromolecules,2019,121:616−624. doi:  10.1016/j.ijbiomac.2018.10.027
    [6] Kollman P A, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models[J]. Accounts of Chemical Research,2000,33:889−897. doi:  10.1021/ar000033j
    [7] Feng T, Ye R, Zhuang H, et al. Thermal behavior and gelling interactions of Mesona Blumes gum and rice starch mixture[J]. Carbohydrate Polymers,2012,90:667−674. doi:  10.1016/j.carbpol.2012.05.094
    [8] Wan J, Zhou G, Luo S, et al. A study of the effect of amino acids on pasting and short-term retrogradation properties of rice starch based on molecular dynamics simulation[J]. Starch,2017,69:1−8.
    [9] Sim S Y, Aziah A A N, Cheng L H. Characteristics of wheat dough and Chinese steamed bread added with sodium alginates or konjac glucomannan[J]. Food Hydrocolloids,2011,25:951−957. doi:  10.1016/j.foodhyd.2010.09.009
    [10] Xu X J, Luo Z G, Yang Q Y, et al. Effect of quinoa flour on baking performance, antioxidant properties and digestibility of wheat bread[J]. Food Chemistry,2019,294:87−95. doi:  10.1016/j.foodchem.2019.05.037
    [11] 孙辉, 姜薇莉, 田晓红, 等. 利用物性测试仪分析小麦粉馒头品质[J]. 中国粮油学报,2005(6):121−125. [Sun H, Jiang W L, Tian X H, et al. Study on steamed-bread quality with texture analyzer[J]. Journal of the Chinese Cereals and Oils Association,2005(6):121−125. doi:  10.3321/j.issn:1003-0174.2005.06.030
    [12] Shaikh I M, Ghodke S K, Ananthanarayan L. Staling of chapatti (Indian unleavened flat bread)[J]. Food Chemistry,2007,101:113−119. doi:  10.1016/j.foodchem.2006.01.015
    [13] Oh N H, Seib P A, Deyoe C W, et al. Measuring the textural characteristics of cooked noodles[J]. Cereal Chemistry,1983,60:433−438.
    [14] Gomand S V, Lamberts L, Visser R G F, et al. Physicochemical properties of potato and cassava starches and their mutants in relation to their structural properties[J]. Food Hydrocolloids,2010,24:424−433. doi:  10.1016/j.foodhyd.2009.11.009
    [15] Xiao H, Lin Q, Liu G Q, et al. Evaluation of black tea polyphenol extract against the retrogradation of starches from various plant sources[J]. Molecules,2012,17:8147−8158. doi:  10.3390/molecules17078147
    [16] Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water[J]. Journal of Chemical Physics,1983,79:926−935. doi:  10.1063/1.445869
    [17] Kirschner K N, Yongye A B, Tschampel S M, et al. GLYCAM06: A generalizable biomolecular force field[J]. Journal of Computational Chemistry,2008,29:622−655. doi:  10.1002/jcc.20820
    [18] Hornak V, Abel R, Okur A, et al. Comparison of multiple amber force fields and development of improved protein backbone parameters[J]. Proteins-Structure Function and Bioinformatics,2006,65:712−725. doi:  10.1002/prot.21123
    [19] Chen N, Chen L, Gao H X, et al. Mechanism of bridging and interfering effects of tea polyphenols on starch molecules[J]. Journal of Food Processing and Preservation,2020,44(8):14575.
    [20] Wang R, Zhou W B, Yu H H, et al. Effects of green tea extract on the quality of bread made from unfrozen and frozen dough processes[J]. Journal of the Science of Food and Agriculture,2006,86:857−864. doi:  10.1002/jsfa.2423
    [21] Pan J X, Li M, Zhang S K, et al. Effect of epigallocatechin gallate on the gelatinisation and retrogradation of wheat starch[J]. Food Chemistry,2019,294:209−215. doi:  10.1016/j.foodchem.2019.05.048
    [22] Trehan S, Singh N, Kaur A. Characteristics of white, yellow, purple corn accessions: Phenolic profile, textural, rheological properties and muffin making potential[J]. Journal of Food Science and Technology-Mysore,2018,55:2334−2343. doi:  10.1007/s13197-018-3171-5
    [23] 王晓曦, 刘亚楠, 董秋晨, 等. 小麦粉糊化特性与冷冻面团(馒头)品质关系研究[J]. 食品工业科技,2012,33(17):77−80. [Wang X X, Liu Y N, Dong Q C, et al. Research of the relationship between wheat flour viscosity and quality of frozen dough mantou[J]. Science and Technology of Food Industry,2012,33(17):77−80.
    [24] Byars J A, Singh M. Rheological and textural properties of pulse starch gels[J]. Starch-Starke,2016,68(7-8):778−784. doi:  10.1002/star.201500271
    [25] Zhang L M, Yang X, Li S, et al. Preparation, physicochemical characterization and in vitro digestibility on solid complex of maize starches with quercetin[J]. LWT-Food Science and Technology,2011,44:787−792. doi:  10.1016/j.lwt.2010.09.001
    [26] Shen W, Xu Y, Lu Y H. Inhibitory effects of citrus flavonoids on starch digestion and antihyperglycemic effects in HepG2 cells[J]. Journal of Agricultural and Food Chemistry,2012,60:9609−9619. doi:  10.1021/jf3032556
    [27] Shi M, Jing Y, Yang L, et al. Structure and physicochemical properties of malate starches from corn, potato, and wrinkled pea starches[J]. Polymers,2019,11(9):1523−1537. doi:  10.3390/polym11091523
    [28] Liu Y, Chen J, Luo S, et al. Physicochemical and structural properties of pregelatinized starch prepared by improved extrusion cooking technology[J]. Carbohydrate Polymers,2017,175:265−272. doi:  10.1016/j.carbpol.2017.07.084
    [29] Wang W, Zhou H, Yang H, et al. Effects of salts on the gelatinization and retrogradation properties of maize starch and waxy maize starch[J]. Food Chemistry,2017,214:319−327. doi:  10.1016/j.foodchem.2016.07.040
    [30] Du J J, Yang Z K, Xu X N, et al. Effects of tea polyphenols on the structural and physicochemical properties of high-hydrostatic-pressure-gelatinized rice starch[J]. Food Hydrocolloids,2019,91:256−262. doi:  10.1016/j.foodhyd.2019.01.035
    [31] He C A, Zhang Z, Liu H, et al. Effect of rutin and quercetin on the physicochemical properties of Tartary buckwheat starch[J]. Starch,2018,70:1−8.
    [32] Benson N C, Daggett V. A Comparison of multiscale methods for the 464 analysis of molecular dynamics simulations[J]. Journal of Physical Chemistry B,2012,116:8722−8731. doi:  10.1021/jp302103t
    [33] Cheetham N W H, Tao L P. Amylose conformational transitions in binary DMSO/water mixtures[J]. Carbohydrate Polymers,1998,35:287−295. doi:  10.1016/S0144-8617(97)00151-3
    [34] Schreiner W, Karch R, Knapp B, et al. Relaxation estimation of RMSD in molecular dynamics immunosimulations[J]. Computational and Mathematical Methods in Medicine,2012,1:173521.
    [35] Tusch M, Kruger J, Fels G. Structural stability of V-amylose helices in water-DMSO mixtures analyzed by molecular dynamics[J]. Journal of Chemical Theory and Computation,2011,7:2919−2928. doi:  10.1021/ct2005159
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  24
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-10-11

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升