二氧化氯气体处理对果蔬采后生理代谢及质量安全的影响

赵琪琪 胡文忠 陈晨 刘程惠 冯可 姜爱丽 刘思思 张艳慧

赵琪琪,胡文忠,陈晨,等. 二氧化氯气体处理对果蔬采后生理代谢及质量安全的影响[J]. 食品工业科技,2021,42(18):387−396. doi:  10.13386/j.issn1002-0306.2020080165
引用本文: 赵琪琪,胡文忠,陈晨,等. 二氧化氯气体处理对果蔬采后生理代谢及质量安全的影响[J]. 食品工业科技,2021,42(18):387−396. doi:  10.13386/j.issn1002-0306.2020080165
ZHAO Qiqi, HU Wenzhong, CHEN Chen, et al. Effects of Chlorine Dioxide Gas Treatment on Post-harvest Physiological Metabolism and Quality and Safety of Fruits and Vegetables[J]. Science and Technology of Food Industry, 2021, 42(18): 387−396. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080165
Citation: ZHAO Qiqi, HU Wenzhong, CHEN Chen, et al. Effects of Chlorine Dioxide Gas Treatment on Post-harvest Physiological Metabolism and Quality and Safety of Fruits and Vegetables[J]. Science and Technology of Food Industry, 2021, 42(18): 387−396. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080165

二氧化氯气体处理对果蔬采后生理代谢及质量安全的影响

doi: 10.13386/j.issn1002-0306.2020080165
基金项目: “十三五”国家重点研发计划项目(2016YFD0400903);国家自然科学基金项目(31471923,31172009)
详细信息
    作者简介:

    赵琪琪(1995−),女,硕士研究生,研究方向:食品质量与安全,E-mail:844010060@qq.com

    通讯作者:

    胡文忠(1959−),男,博士,教授,研究方向:食品科学,E-mail:hwz@dlnu.edu.cn

  • 中图分类号: TS255.3

Effects of Chlorine Dioxide Gas Treatment on Post-harvest Physiological Metabolism and Quality and Safety of Fruits and Vegetables

  • 摘要: 二氧化氯(ClO2)气体是国际上公认的安全、无毒绿色消毒剂,其具有杀菌性强、扩散性和穿透性好、不发生氯的替代反应、无毒副作用等优点,已在农业、食品、医药等领域应用广泛。近年来,ClO2在果蔬保鲜领域得到很好的应用,成为研究热点。本文论述了ClO2气体对采后果蔬中乙烯和呼吸、膜脂、苯丙烷类、能量等生理代谢及果蔬失水软化、外观和营养等贮藏品质方面的影响,并讨论了ClO2气体对果蔬致病、致腐微生物的杀菌机理及其杀菌效果,同时分析了ClO2气体在果蔬保鲜中的应用限制,最后,根据目前的应用研究现状对存在的问题进行总结,并对其未来的应用前景进行了展望,旨在为拓宽ClO2气体在果蔬保鲜领域的广泛应用提供参考。
  • 表  1  ClO2气体对果蔬致腐微生物的影响

    Table  1.   Effects of ClO2 gas on microorganisms causing rot in fruits and vegetables

    致腐微生物处理条件作用效果参考文献
    软腐欧文氏菌
    Erwinia carotovora
    在22 ℃下,0.02 mg·L−1 ClO2气体
    处理10 min
    降低了马铃薯上 7.4 lg CFU·mL−1软腐欧文氏菌[39]
    酸热脂环酸芽孢杆菌
    Alicyclobacillus acidoterrestris
    在21 ℃下,分别以0.39、0.50、
    0.60 mg·L−1 ClO2气体处理1、2和3 h
    在苹果上预先接种酸热脂环酸芽孢杆菌,
    以三种浓度ClO2气体分别处理1、2和
    3 h后,可减少2.7、3.7、4.5 lg CFU·g−1
    [36]
    嗜温需氧细菌
    Mesophilic aerobic bacteria
    在12~14 ℃下,4 mg·L−1 ClO2气体
    处理12 h
    降低了蓝莓上 2.33 lg CFU·g−1嗜温需氧细菌[40]
    嗜温总需氧细菌
    Total aerobic bact
    在28 ℃和91%相对湿度下,
    1.33 mg·L−1 ClO2气体处理30 s
    胡萝卜上嗜温需氧细菌、嗜冷细菌和乳酸菌
    分别减少1.88、1.71和2.60 lg CFU·g−1
    [41]

    耐冷细菌
    Psychrotrophs
    乳酸菌
    Lactic acid bact
    铜绿假单胞菌
    Pseudomonas aeruginosa
    在22 ℃下,分别以16、24、32 mg·L−1
    ClO2气体处理2.5 h
    预先在马铃薯上接种铜绿假单胞菌,处理后
    分别减少了1.2、2.5、2.87 lg CFU·g−1
    [42]
    在22 ℃下,分别以20、30、40 mg·L−1
    ClO2气体处理5 h
    预先在马铃薯上接种铜绿假单胞菌,处理后
    分别减少了2.5、3.5、4.3 lg CFU·g−1
    酵母菌
    Yeasts
    在28 ℃和91%相对湿度下,
    1.33 mg·L−1 ClO2气体处理30 s
    胡萝卜上酵母菌减0.66 lg CFU·g−1[41]
    酵母和霉菌
    Yeasts and molds
    在22 ℃下,使用1.4~4.1 mg · L−1
    ClO2气体处理6~25 min
    处理后苹果上的酵母菌和霉菌可减少
    1.09~1.68 lg CFU·g−1
    [43]
    在22 ℃下,使用1.4~4.1 mg·L−1
    ClO2气体处理6~25 min
    处理后洋葱上的酵母菌和霉菌可减少
    0.22~0.36 lg CFU·g−1
    [43]
    在22 ℃下,使用1.4~4.1 mg·L−1
    ClO2气体处理6~25 min
    处理后番茄上的酵母菌和霉菌可减少
    0.87~1.61 lg CFU·g−1
    [43]
    在22 ℃下,分别以16、24、
    32 mg·L−1 ClO2气体处理2.5 h
    马铃薯上酵母和霉菌分别减少了
    1.1、1.2、2.5 lg CFU·g−1
    [42]
    在22 ℃下,分别以20、30、
    40 mg·L-1 ClO2气体处理5 h
    马铃薯上酵母和霉菌分别减少了
    2.1、2.5、3.2 lg CFU·g−1
    在12~14 ℃下,4 mg·L−1
    ClO2气体处理12 h
    蓝莓上酵母和霉菌分别减少了
    1.63、0.48 lg CFU·g−1
    [40]
    链格孢
    Alternaria alternata
    在23 ℃和75%相对湿度下,以10 mg·L−1
    ClO2气体处理 1、3、5、7和10 min
    在罗姆番茄上接种约5 lg·mL−1链格孢和匐柄霉,处理1 min后两种孢子减少 到2.5 lg·mL−1,处理3 min后完全抑制两种孢子的生长,处理5和7 min后,两种孢子导致的腐烂显著延迟[44]
    匐柄霉
    Stemphylium vesicarium
    灰葡萄孢菌
    Botrytis cinerea
    在25 ℃下,以200 μmol·L−1
    ClO2处理3 d
    完全抑制了青椒和冬枣上 灰葡萄孢菌的生长[45]
    尖孢镰刀菌
    Fusarium oxysporum f. sp.
    在25 ℃和60%相对湿度下,以0.11 mg·L−1
    ClO2气体处理30~60 min
    完全抑制了甘薯上尖孢镰刀菌的生长[46]
    下载: 导出CSV

    表  2  ClO2气体对果蔬致病微生物的影响

    Table  2.   Effects of ClO2 gas on pathogenic microorganisms in fruits and vegetables

    消毒对象致病微生物处理条件作用效果参考文献
    苹果大肠杆菌O157:H7在21 ℃和90%~95%相对湿度下,分别以12.0、7.2、4.8 mg · L−1 ClO2气体处理
    10、20、30 min
    均可完全杀死最初接种在苹果表面的
    8 lg CFU·g−1大肠杆菌O157:H7
    [49]
    单增李斯特菌在21 ℃和90%相对湿度下,4 mg·L−1
    ClO2气体处理10 min
    果皮上5.5 lg CFU的 单增李斯特菌被杀死[50]
    沙门氏菌在22 ℃下,使用1.4~4.1 mg·L−1
    ClO2气体处理沙门氏菌6~25 min
    在苹果上接种8 lg CFU·g−1沙门氏菌,每个
    苹果处理后可减少3.21~4.21 lg CFU·g−1
    [42]
    橙子沙门氏菌在22 ℃和90%~95%相对湿度下,用0.1、0.3和0.5 mg·L−1 ClO2气体处理14 min每个橙子表面的沙门氏菌
    减少数量均>5 lg CFU·g−1
    [51]
    哈密瓜大肠杆菌O157:H7在22 ℃和90%~95%相对湿度下,使用
    5.0 mg·L−1 ClO2气体处理5.5 min
    在哈密瓜上接种5 lg CFU·g−1 大肠杆菌
    O157:H7,处理后被杀死
    [52]
    单增李斯特菌在22 ℃和90%~95%相对湿度下,使用
    5.0 mg·L−1 ClO2气体处理4.3 min
    在哈密瓜上接种5 lg CFU·g−1
    单增李斯特菌,处理后被杀死
    蓝莓沙门氏菌在在15 ℃和60%~75%相对湿度下,分别以
    4.42 mg·L−1 ClO2气体处理15 h
    在蓝莓上分别接种6.8、5.2、5.2 lg CFU·g−1大肠杆菌O157:H7、沙门氏菌、单增李斯特菌,处理后蓝莓上
    三种食源性病原菌 减少量>4 lg CFU·g−1
    [40]
    大肠杆菌O157:H7
    单增李斯特菌
    沙门氏菌在23 ℃和75%~90%相对湿度下,
    8.0 mg·L−1 ClO2气体处理120 min
    在蓝莓的表皮、花萼组织和茎疤组织 接种6.0~
    6.8 lg CFU·g−1沙门氏菌,处理后分别将蓝莓表皮、
    花萼组织 和茎疤组织上的沙门氏菌数量
    降低了3.67、2.44、3.24 lg CFU·g−1
    [53]
    草莓大肠杆菌O157:H7在22 ℃和90%~95%相对湿度下,用5 mg·L−1 ClO2气体处理10 min在草莓表面上分别接种三种 食源性病原体约
    8~9 lg·mL−1,处理后三种食源性病原体的
    数量分别减少4.6、4.7、4.3 lg CFU·g−1
    [54]
    单增李斯特菌
    沙门氏菌
    胡萝卜沙门氏菌在22 ℃和90%相对湿度下,使用0.06 mg·L−1 ClO2气体处理15 min在胡萝卜上接种107~108 lg CFU/g 三种食源性病原菌,处理后 可减少0.86~1.50 lg CFU·g−1[55]
    大肠杆菌O157:H7
    单增李斯特菌
    青椒大肠杆菌O157:H7在22 ℃和90%~95%的相对湿度下,使用0.62和1.24 mg·L−1 ClO2气体 处理30 min受伤青椒经处理后,表面的大肠杆菌O157:H7
    分别减少了3.03和6.45 lg CFU·g−1
    [56]
    沙门氏菌在22 ℃和90%相对湿度下,使用0.06 mg·L−1 ClO2气体处理15 min在青椒上接种107~108 lg CFU/g 三种食源性病原菌,处理后可减少4.12~5.43 lg CFU·g−1[55]
    大肠杆菌O157:H7
    单增李斯特菌
    菠菜叶大肠杆菌O157:H7分别在21 ℃和50%、70%、90%相对湿度下,使用0.13 mg·L−1 ClO2气体处理20 min可使菠菜上三种食源性病原体的数量分别减少1.25~1.78和2.02~2.54 lg CFU·g−1,而90%相对湿度下,处理15 min后 就降至1 lg CFU·g−1检测限值以下[57]
    沙门氏菌
    单增李斯特菌
    卷心菜沙门氏菌在22 ℃下,使用4.1 mg·L−1 ClO2气体分别对沙门氏菌、大肠杆菌O157:H7、单增李斯特菌
    处理30.8、20.5、29.3 min
    在卷心菜上分别接种6.8 lg CFU·g−1 沙门氏菌、
    大肠杆菌O157:H7、单增李斯特菌,处理后可
    分别减少4.42、3.13、3.60 lg CFU·g−1
    [43]
    大肠杆菌O157:H7
    单增李斯特菌
    洋葱沙门氏菌在22 ℃下,使用1.4~4.1 mg·L−1 ClO2气体
    处理沙门氏菌6~25 min
    在洋葱上接种8 lg CFU/g沙门氏菌,每个
    洋葱处理后可减少0.83~1.94 lg CFU·g−1
    [43]
    绿豆芽沙门氏菌在22 ℃和50%~75%相对湿度下,以0.5 mg·L−1 ClO2气体分别处理10、30、60 min处理后,沙门氏菌数量分别减少了
    3.0、3.0~4.0、4.0~5.5 lg CFU·g−1
    [58]
    番茄大肠杆菌O157:H7分别在22 ℃和50%、70%、90%相对湿度下,用0.08 mg·L−1 ClO2气体 分别处理20 min在番茄上预先接种三种食源性病原菌,在50%相对湿度下处理20 min可减少1.22~1.52 lg CFU·cm−2,在70%相对湿度下处理15 min和在90%相对湿度下处理10 min可降至检测限值以下(0.48 lg CFU·cm−2[59]
    沙门氏菌
    单增李斯特菌
    大肠杆菌O157:H7在15和25 ℃下,以0.05 mg·L−1
    ClO2气体处理20 min
    三种食源性病原菌在25 ℃处理20 min 减少了1.88~2.31 lg CFU·cm−2,15 ℃处理20 min减少了5.91~6.82 lg CFU·cm−2[60]
    沙门氏菌
    单增李斯特菌
    肠炎沙门氏菌 Salmonella enterica分别在4和25 ℃下,使用0.15~0.85 mg·L−1 ClO2气体处理58 min在番茄上预先接种9.79 lg CFU·mL−1 肠炎
    沙门氏菌,在4 ℃和25 ℃下处理后 分别
    减少了3.95和7.37 lg CFU·cm−2
    [61]
    下载: 导出CSV
  • [1] Xuetong F, Kimberly J S. Formation of trichloromethane in chlorinated water and fresh-cut produce and as a result of reaction with citric acid[J]. Postharvest Biology and Technology,2015,109:65−72. doi:  10.1016/j.postharvbio.2015.06.009
    [2] 衣颖, 吴金辉, 郝丽梅, 等. 气体二氧化氯应用技术的研究进展与趋势[J]. 中国消毒学杂志,2017,34(4):360−366. [Yi Y, Wu J H, Hao L M, et al. Research progress and trend of application technology of gaseous chlorine dioxide[J]. Chinese Journal of Disinfection,2017,34(4):360−366.
    [3] Yasufumi S, Ayumi M, Masashi U, et al. A study of the properties of chlorine dioxide gas as a fumigant[J]. Experimental Animals,2016,65(3):303−310. doi:  10.1538/expanim.15-0092
    [4] 康慧芳, 乔勇进, 刘晨霞, 等. 二氧化氯气体对葡萄链格孢菌的抑制作用[J]. 食品与发酵工业,2021,47(2):95−101. [Kang H F, Qiao Y J, Liu C X, et al. Inhibitory effect of chlorine dioxide gas on Alternaria alternata[J]. Food and Fermentation Industries,2021,47(2):95−101.
    [5] Hyowon P, Narae H, Chul-Woo K, et al. Chlorine dioxide gas treatment improves the quality of hardy kiwifruit(Actinidia arguta) during storage[J]. Forest Science and Technology,2019,15(3):159−164. doi:  10.1080/21580103.2019.1636414
    [6] Guo Q, Wu B, Peng X Y, et al. Effects of chlorine dioxide treatment on respiration rate and ethylene synthesis of postharvest tomato fruit[J]. Postharvest Biology and Technology,2014,93:9−14. doi:  10.1016/j.postharvbio.2014.01.013
    [7] Xu F, Sun Y, Zhang D W, et al. The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene[J]. Journal of Experimental Botany,2012,63(15):5705−5716. doi:  10.1093/jxb/ers226
    [8] Du J H, Fu M R, LI M M, et al. Effects of chlorine dioxide gas on postharvest physiology and storage quality of green bell pepper (Capsicum frutescens L. var. Longrum)[J]. Agricultural Sciences in China,2007,6(2):214−219. doi:  10.1016/S1671-2927(07)60037-6
    [9] Liao Y W K, Shi K, Fu L J, et al. The reduction of reactive oxygen species formation by mitochondrial alternative respiration in tomato basal defense against TMV infection[J]. Planta,2012,235(2):225−238. doi:  10.1007/s00425-011-1483-z
    [10] Warunee C, Athiwat C, Pornchai R, et al. Reduction of reactive oxygen species production and membrane damage during storage of ‘Daw’ longan fruit by chlorine dioxide[J]. Scientia Horticulturae,2014,170:143−149. doi:  10.1016/j.scienta.2014.02.036
    [11] Shu-Hsien H, Chih-Wen Y, Chin-Ho L. Hydrogen peroxide functions as a stress signal in plants[J]. Botanical Bulletin of Academia Sinica,2005,46(1):1−10.
    [12] Atinut J, Jamnong U, Pathrapol L, et al. Induced expression of NOX and SOD by gaseous sulfur dioxide and chlorine dioxide enhances antioxidant capacity and maintains fruit quality of ‘Daw’ longan fruit during storage through H2O2 signaling[J]. Postharvest Biology and Technology,2019,156:110938. doi:  10.1016/j.postharvbio.2019.110938
    [13] 甄凤元, 乔勇进, 高春霞, 等. 二氧化氯气体处理对杭白菜贮藏品质的影响[J]. 核农学报,2017,31(7):1323−1329. [Zheng F Y, Qiao Y J, Gao C X, et al. Effect of chlorine dioxide gas treatment on storage quality of Brassica pekinensis[J]. Journal of Nuclear Agricultural Sciences,2017,31(7):1323−1329. doi:  10.11869/j.issn.100-8551.2017.07.1323
    [14] Jiang L Q, Feng W Y, Li F, et al. Effect of one-methylcyclopropene (1-MCP) and chlorine dioxide (ClO2) on preservation of green walnut fruit and kernel traits[J]. Journal of Food Science and Technology,2015,52(1):267−275. doi:  10.1007/s13197-013-0996-9
    [15] Ho-Hyun C, Ji-Hoon K, Kyung-Bin S. Effects of aqueous chlorine dioxide treatment and cold storage on microbial growth and quality of blueberries[J]. Journal of the Korean Society for Applied Biological Chemistry,2013,56(3):309−315. doi:  10.1007/s13765-013-3017-9
    [16] 钟梅, 吴斌, 武建明, 等. 二氧化氯对草莓营养成分及果实品质的影响[J]. 食品科技,2009,34(5):46−49. [Zhong M, Wu B, Wu J M, et al. Effect of chlorine dioxide treatment on the nutrient component and quality of strawberry[J]. Food Science and Technology,2009,34(5):46−49.
    [17] 张宁, 毕研飞, 郭静, 等. 不同抗性甜瓜接种蔓枯病菌后PAL、PPO与POD活性的变化[J]. 植物生理学报,2016,52(8):1169−1175. [Zhang N, Bi Y F, Guo J, et al. Changes of PAL, PPO and POD activities in different resistant melons after inoculation[J]. Plant Physiology Journal,2016,52(8):1169−1175.
    [18] 郑晓渊, 王调兰, 张静荣, 等. 二氧化氯处理促进厚皮甜瓜果实的采后愈伤[J]. 中国农业科学,2019,52(3):512−520. [Zheng X Y, Wang T L, Zhang J R, et al. Using chlorine dioxide treatment to promote wound healing of postharvest muskmelon fruit[J]. Scientia Agricultura Sinica,2019,52(3):512−520. doi:  10.3864/j.issn.0578-1752.2019.03.011
    [19] Morteza S A, Abbasali J, Luo Z S, et al. Ensuring sufficient intracellular ATP supplying and friendly extracellular ATP signaling attenuates stresses, delays senescence and maintains quality in horticultural crops during postharvest life[J]. Trends in Food Science & Technology,2018,76:67−81.
    [20] Yao F, Huang Z, Li D M, et al. Phenolic components, antioxidant enzyme activities and anatomic structure of longan fruit pericarp following treatment with adenylate triphosphate[J]. Scientia Horticulturae,2014,180:6−13. doi:  10.1016/j.scienta.2014.10.008
    [21] Lin Y, Lin Y, Lin H, et al. Hydrogen peroxide-induced pericarp browning of harvested longan fruit in association with energy metabolism[J]. Food Chemistry,2017,225:31−36. doi:  10.1016/j.foodchem.2016.12.088
    [22] 李美玲, 林育钊, 王慧, 等. 能量状态在果蔬采后衰老中的作用及其调控研究进展[J]. 食品科学,2019,40(9):290−295. [Li M L, Lin Y Z, Wang H, et al. Recent advances in the role and regulation of energy status in senescence of harvested fruits and vegetables[J]. Food Science,2019,40(9):290−295. doi:  10.7506/spkx1002-6630-20181128-333
    [23] Lin Y, Lin Y, Lin H, et al. Application of propyl gallate alleviates pericarp browning in harvested longan fruit by modulating metabolisms of respiration and energy[J]. Food Chemistry,2018,240:863−869. doi:  10.1016/j.foodchem.2017.07.118
    [24] Thanakorn V, Jamnong U, Kobkiat S. Gaseous chlorine dioxide increases energy status and energy metabolism related enzyme activities leading to reduction in pericarp browning of longan fruit during storage[J]. Scientia Horticulturae,2020,263:109118. doi:  10.1016/j.scienta.2019.109118
    [25] Wang H, Qian Z, Ma S, et al. Energy status of ripening and postharvest senescent fruit of litchi (Litchi chinensis Sonn.)[J]. BMC Plant Biology,2013,13(1):55−55. doi:  10.1186/1471-2229-13-55
    [26] Athiwat C, Lalida S, Jamnong U, et al. Effects of chlorine dioxide on mitochondrial energy levels and redox status of ‘Daw’ longan pericarp during storage[J]. Postharvest Biology and Technology,2016,116:26−35. doi:  10.1016/j.postharvbio.2016.01.002
    [27] Paniagua A C, East A R, Hindmarsh J P, et al. Moisture loss is the major cause of firmness change during postharvest storage of blueberry[J]. Postharvest Biology and Technology,2013,79(1):13−19.
    [28] Mehmet S A, Cengiz C. The applications of ‘active packaging and chlorine dioxide’ for extended shelf life of fresh strawberries[J]. Packaging Technology and Science,2011,24(3):123−136. doi:  10.1002/pts.918
    [29] Zhang B D, Huang C X, Zhang L Y, et al. Application of chlorine dioxide microcapsule sustained-release antibacterial fifilms for preservation of mangos[J]. Association of Food Scientists & Technologists,2019,56(3):1095−1103.
    [30] Sun X X, Elizabeth B, Anne P, et al. Controlled-release of chlorine dioxide in a perforated packaging system to extend the storage life and improve the safety of grape tomatoes[J]. Journal of Visualized Experiment Jove,2017:122.
    [31] Kambiz S, Gopinath K, Phuntheera K, et al. A polymeric chlorine dioxide self-releasing sheet to prolong postharvest life of cherry tomatoes[J]. Postharvest Biology and Technology,2020:161.
    [32] Praeger U, Herppich W B, Hassenberg K. Aqueous chlorine dioxide treatment of horticultural produce: Effects on microbial safety and produce quality-A review[J]. Critical Reviews in Food Science and Nutrition,2016,58(2):318−333.
    [33] Wei F, Fu M R, Li J P, et al. Chlorine dioxide delays the reddening of postharvest green peppers by affffecting the chlorophyll degradation and carotenoid synthesis pathways[J]. Postharvest Biology and Technology,2019:156.
    [34] Sun X, Elizabeth B, Chris F, et al. The effect of controlled-release chlorine dioxide on the preservation of grapefruit[J]. HortScience,2017,52(1):122−126. doi:  10.21273/HORTSCI11363-16
    [35] Mahmoud B S M, Linton R H. Inactivation kinetics of inoculated Escherichia coli O157: H7 and Salmonella enterica on lettuce by chlorine dioxide gas[J]. Food Microbiology,2007,25(2):244−252.
    [36] Lee S Y, Dancer G I, Chang S S, et al. Efficacy of chlorine dioxide gas against Alicyclobacillus acidoterrestris spores on apple surfaces[J]. International Journal of Food Microbiology,2005,108(3):364−368.
    [37] 薛敏, 高贵田, 张思远, 等. 气体ClO2对‘华优’猕猴桃采后生理及贮藏品质的影响[J]. 食品科学,2015,36(18):257−261. [Xue M, Gao G T, Zhang S Y, et al. Effects of Chlorine dioxide gas on post-harvest physiology and storage quality of ‘Huayou’ kiwifruit[J]. Food Science,2015,36(18):257−261. doi:  10.7506/spkx1002-6630-201518048
    [38] Berg J D, Roberts P V, Matin A. Effect of chlorine dioxide on selected membrane functions of Eschericia coli[J]. The Journal of Applied Bacteriology,1986,60(3):213−220. doi:  10.1111/j.1365-2672.1986.tb01075.x
    [39] Tsai L S, Huxsoll C C, Robertson G. Prevention of potato spoilage during storage by chlorine dioxide[J]. Journal of Food Science,2001,66(3):472−477. doi:  10.1111/j.1365-2621.2001.tb16133.x
    [40] Hui-Erh C, Cheng-An H, Li-han H, et al. Feasibility and efficacy of using gaseous chlorine dioxide generated by sodium chlorite-acid reaction for decontamination of foodborne pathogens on produce[J]. Food Control,2020:108.
    [41] Gómez-López V M, Devlieghere F, Ragaert P, et al. Shelf-life extension of minimally processed carrots by gaseous chlorine dioxide[J]. International Journal of Food Microbiology,2007,116(2):221−227. doi:  10.1016/j.ijfoodmicro.2006.12.008
    [42] Vivian C H W, Amanda R. A simple instrument-free gaseous chlorine dioxide method for microbial decontamination of potatoes during storage[J]. Food Microbiology,2010,27(1):179−184. doi:  10.1016/j.fm.2009.08.007
    [43] Sy K V, Murray M B, Harrison M D, et al. Evaluation of gaseous chlorine dioxide as a sanitizer for killing Salmonella, Escherichia coli O157: H7, Listeria monocytogenes, and yeasts and molds on fresh and fresh-cut produce[J]. Journal of Food Protection,2005,68(6):1176−1187. doi:  10.4315/0362-028X-68.6.1176
    [44] Valentina T, Richard H L, Mark T M. Use of chlorine dioxide gas for the postharvest control of Alternaria alternata and Stemphylium vesicarium on Roma tomatoes[J]. Journal of the Science of Food and Agriculture,2013,93(13):3330−3333. doi:  10.1002/jsfa.6180
    [45] Fu M R, Zhang X M, Jin T, et al. Inhibitory of grey mold on green pepper and winter jujube by chlorine dioxide (ClO2) fumigation and its mechanisms[J]. LWT-Food Science and Technology,2019,100:335−340. doi:  10.1016/j.lwt.2018.10.092
    [46] Lee Y J, Jeong J J, Jin H J, et al. In vitro and in vivo inhibitory effects of gaseous chlorine dioxide against Fusarium oxysporum f. sp. batatas isolated from stored sweetpotato: Study II[J]. The Plant Pathology Journal,2019,35(5):437−444. doi:  10.5423/PPJ.OA.04.2019.0078
    [47] Zhang X M, Fu M R. Inhibitory effect of chlorine dioxide(ClO2) fumigation on growth and patulin production and its mechanism in Penicillum expansum[J]. LWT-Food Science and Technology,2018,96:335−343. doi:  10.1016/j.lwt.2018.05.051
    [48] 冯可, 胡文忠, 姜爱丽, 等. 鲜切果蔬中4种病原微生物多重PCR检测技术[J]. 食品科学,2018,39(6):276−283. [Feng K, Hu W Z, Jiang A L, et al. Multiplex PCR method for detection of four foodborne pathogens on fresh-cut fruits and vegetables[J]. Food Science,2018,39(6):276−283. doi:  10.7506/spkx1002-6630-201806043
    [49] Du J, Han Y, Linton R H. Efficacy of chlorine dioxide gas in reducing Escherichia coli O157: H7 on apple surfaces[J]. Food Microbiology,2003,20(5):583−591. doi:  10.1016/S0740-0020(02)00129-6
    [50] Du J, Han Y, Linton R H. Inactivation by chlorine dioxide gas(ClO2) of Listeria monocytogenes spotted onto different apple surfaces[J]. Food Microbiology,2002,19(5):481−490. doi:  10.1006/fmic.2002.0501
    [51] Bhagat A, Mahmoud B S, Linton R H. Effect of chlorine dioxide gas on Salmonella enterica inoculated on navel orange surfaces and its impact on the quality attributes of treated oranges[J]. Foodborne Pathogens and Disease,2011,8(1):77−85. doi:  10.1089/fpd.2010.0622
    [52] Mahmoud B S M, Vaidya N A, Corvalan C M, et al. Inactivation kinetics of inoculated Escherichia coli O157: H7, Listeria monocytogenes and Salmonella Poona on whole cantaloupe by chlorine dioxide gas[J]. Food Microbiology,2008,25(7):857−865. doi:  10.1016/j.fm.2008.05.009
    [53] Sy K V, McWatters K H, Beuchat L R. Efficacy of gaseous chlorine dioxide as a sanitizer for killing Salmonella, yeasts and molds on blueberries, strawberries and raspberries[J]. Journal of Food Protection,2005,68(6):1165−1175. doi:  10.4315/0362-028X-68.6.1165
    [54] Mahmoud B S M, Bhagat A R, Linton R H. Inactivation kinetics of inoculated Escherichia coli O157: H7, Listeria monocytogenes and Salmonella enterica on strawberries by chlorine dioxide gas[J]. Food Microbiology,2007,24(7):736−744.
    [55] Sang-Hyun P, Dong-Hyun K. Influence of surface properties of produce and food contact surfaces on the efficacy of chlorine dioxide gas for the inactivation of foodborne pathogens[J]. Food Control,2007,81:88−95.
    [56] Han Y, Sherman D M, Linton R H, et al. The effects of washing and chlorine dioxide gas on survival and attachment of Escherichia coli O157: H7 to green pepper surfaces[J]. Food Microbiology,2000,17(5):521−533. doi:  10.1006/fmic.2000.0343
    [57] Sang-Hyun P, Dong-Hyun K. Combination treatment of chlorine dioxide gas and aerosolized sanitizer for inactivating foodborne pathogens on spinach leaves and tomatoes[J]. International Journal of Food Microbiology,2015,207:103−108. doi:  10.1016/j.ijfoodmicro.2015.04.044
    [58] Vara P, Bassam A A, Lin S L, et al. Evaluation of chlorine dioxide gas treatment to inactivate Salmonella enterica on mungbean sprouts[J]. Journal of Food Protection,2014,77(11):1876−1881. doi:  10.4315/0362-028X.JFP-13-407
    [59] Sang-Hyun P, Woo-ju K, Dong-Hyun K. Effect of relative humidity on inactivation of foodborne pathogens using chlorine dioxide gas and its residues on tomatoes[J]. Letters in Applied Microbiology,2018,67(2):154−160. doi:  10.1111/lam.13002
    [60] Sang-Hyun P, Dong-Hyun K. Effect of temperature on chlorine dioxide inactivation of Escherichia coli O157: H7, Salmonella typhimurium and Listeria monocytogenes on spinach, tomatoes, stainless steel and glass surfaces[J]. International Journal of Food Microbiology,2018,275:39−45. doi:  10.1016/j.ijfoodmicro.2018.03.015
    [61] Siriyupa N, Thitisilp K, Veesuda S, et al. Antimicrobial efficacy of gaseous chlorine dioxide against Salmonella enterica typhimurium on grape tomato (Lycopersicon esculentum)[J]. International Journal of Food Science and Technology,2016,51(10):2225−2232. doi:  10.1111/ijfs.13209
    [62] Sang-Hyun P, Dong-Hyun K. Antimicrobial effect of chlorine dioxide gas against foodborne pathogens under differing conditions of relative humidity[J]. Food Science and Technology,2015,60(1):186−191.
    [63] 袁宏甦, 谭迎新. 气体二氧化氯爆炸特性参数的测定[J]. 中国安全科学学报,2009(2):97−100. [Yuan H S, Tan Y X. Determination of explosive characteristics of gas chlorine dioxide[J]. China Safety Science Journal,2009(2):97−100. doi:  10.3969/j.issn.1003-3033.2009.02.017
    [64] 王秀丽. 气体二氧化氯的爆炸特性研究[D]. 太原: 中北大学, 2008.

    Wang X L. Explosion characteristics study of chlorine dioxide gas[D]. Taiyuan: North University of China, 2008.
    [65] 贺启环. 化学法二氧化氯发生器的综合安全性措施[C]//二氧化氯研究与应用进展——二〇一五二氧化氯与水处理技术研讨会暨二氧化氯专业委员会十周年纪念年会论文集. 深圳: 全国化工标准物质委员会二氧化氯专业委员会, 2015.

    He Q H. Comprehensive safety measures of chemical chlorine dioxide generator[C]//Research and application progress of chlorine dioxide—Proceedings of the symposium on chlorine dioxide and water treatment technology and the 10th anniversary annual meeting of chlorine dioxide professional committee. Shenzhen: Chlorine Dioxide Professional Committee of National Chemical Reference Materials Committee, 2015.
    [66] Hirofumi M, Toshiaki F, Takanori M, et al. Inactivation of feline Calicivirus, a Norovirus surrogate, by chlorine dioxide gas[J]. Biocontrol Science,2009,14(4):147−153. doi:  10.4265/bio.14.147
    [67] Smith D J, Ernst W, Herges G R. Chloroxyanion residues in cantaloupe and tomatoes after chlorine dioxide gas sanitation[J]. Journal of Agricultural and Food Chemistry,2015,63(43):9640−9649. doi:  10.1021/acs.jafc.5b04153
    [68] Wei J, Chen Y, Atawula T, et al. Degradation of pesticide residues by gaseous chlorine dioxide on table grapes[J]. Postharvest Biology and Technology,2018,137:142−148. doi:  10.1016/j.postharvbio.2017.12.001
  • 加载中
表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  26
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-18
  • 网络出版日期:  2021-08-09
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。