Determination of Nine Heavy Metal Elements in Livestock and Poultry Meat by ICP-MS
-
摘要: 目的:建立石墨消解-电感耦合等离子体质谱法测定畜禽肉中9种重金属元素,并对7种畜禽肉样品中重金属含量进行分析。方法:采用石墨消解法进行样品前处理,用电感耦合等离子质谱法(ICP-MS)检测重金属含量,并计算各元素含量。结果:铬、铅、砷、镉、钴在0~50 μg/L,铜、锰、镍在0~500 μg/L,锌在0~1000 μg/L浓度范围内线性关系良好(r
≥0.9999),检出限在0.003~0.400 μg/L之间。样品加样回收率在97.2%~104.4%,RSD≤5.0%(n = 6)。对国家标准物质(GSB-27、 GSB-28)的测定结果均在标准值标准偏差范围内。结论:该方法准确度和精密度高,线性范围广,适用于畜禽肉的检测。本研究为广州市畜禽类的安全性评价,监管体系的建立及运行提供科学依据。 -
关键词:
- 畜禽肉 /
- 电感耦合等离子质谱法(ICP-MS) /
- 消解方法 /
- 重金属元素
Abstract: Objective: Inductively coupled plasma mass spectrometry (ICP-MS) was established for the determination of nine heavy metal elements in livestock and poultry meat, and was applied to the analysis of heavy metal content in seven kinds of livestock and poultry meat samples.Methods: The samples were pretreated with graphite digestion, and heavy metals were detected by ICP-MS.Results:Chromium, lead, arsenic, cadmium, and cobalt (0~50 μg/L), copper, manganese and nickel (0~500 μg/L), and zinc (0~1000 μg/L) showed a good linear relationship (r≥0.9999). The limits of detection were ranged from 0.003 to 0.400 μg/L, the recoveries ranged from 97.2% to 104.4%, RSD≤5.0%(n=6). The results of National Standard Substance (GSB-27, GSB-28) were all within the standard deviation of the standard value.Conclusion:The proposed method had a wide linear range, high accuracy and precision, which was suitable for the monitoring of livestock and poultry meat. This study provided a scientific basis for the safety evaluation, establishment and operation of the supervision system of livestock and poultry in Guangzhou. -
表 1 电感耦合等 离子质谱法(ICP-MS)检测条件
Table 1. Detection conditions of (ICP-MS)
工作参数 设定值 工作参数 设定值 高频发射功率(W) 1450 载气流速(L/min) 0.85 样品提升速率(r/s) 0.1 混合气流量(L/min) 0.28 采样深度(mm) 7.5 等离子气流量(L/min) 15.0 样品提升量(mL /min) 0.4 辅助气流量(L/min) 1.0 雾化室温度(℃) 2 氦气流量(L/min) 5 高频发射功率(W) 1450 载气流速(L/min) 0.85 表 2 消解程序1
Table 2. Digestion procedure 1
工步 工步类型 加热温度(℃) 加热时间(h:min:s) 保持时间(h:min:s) 1 加热 120 00:30:00 02:00:00 2 加热 160 00:30:00 01:30:00 3 冷却 00:20:00 表 3 消解程序2
Table 3. Digestion procedure 2
工步 工步类型 加热温度(℃) 加热时间(h:min:s) 保持时间(h:min:s) 1 加热 120 00:30:00 02:00:00 2 加热 170 00:30:00 01:45:00 3 冷却 00:20:00 表 4 消解程序3
Table 4. Digestion procedure 3
工步 工步类型 加热温度(℃) 加热时间(h:min:s) 保持时间(h:min:s) 1 加热 120 00:30:00 02:00:00 2 加热 170 00:30:00 02:00:00 3 冷却 00:20:00 表 5 前处理消解方法的选择(x ± s,mg/kg)
Table 5. Selection of digestion methods for pre-treatment (x ± s, mg/kg)
消解方法 Cr Pb As Cd Co Cu Mn Ni Zn 1 2.13 ± 0.10 1.24 ± 0.07 0.49 ± 0.06 0.20 ± 0.11 0.55 ± 0.15 5.21 ± 0.12 167.7 ± 2.3 1.78 ± 0.09 24.4 ± 0.67 2 2.31 ± 0.14 1.15 ± 0.05 0.48 ± 0.05 0.19 ± 0.08 0.52 ± 0.06 5.53 ± 0.21 166.1 ± 1.5 1.83 ± 0.11 23.50± 0.29 表 6 消解试剂的选择
Table 6. Selection of digestion acid reagents
消解体系 消解结果 硝酸
(10 mL)淡黄色溶液,表面有油脂,空白值偏低 硝酸+高氯酸
(10 mL+2 mL)淡黄色溶液,表面有油脂,偶有沉淀,空白值偏高 硝酸+高氯酸
(15 mL+5 mL)无色透明溶液,空白值偏低 硝酸+过氧化氢
(8 mL+2 mL)淡黄色溶液,表面有油脂,空白值低 表 7 消解时间优化结果
Table 7. The optimized results of digestion time
消解程序 Cr Pb As Cd Co Cu Mn Ni Zn 1 2.12 ± 0.08 1.25 ± 0.05 0.48 ± 0.04 0.21 ± 0.07 0.50 ± 0.10 5.2 ± 0.12 163 ± 1 1.76 ± 0.10 23.4 ± 0.5 2 2.72 ± 0.04 1.27 ± 0.06 0.51 ± 0.03 0.20 ± 0.02 0.56 ± 0.02 5.6± 0.1 171.1 ± 1.1 1.82 ± 0.05 25.3 ± 0.4 3 2.18 ± 0.11 1.27 ± 0.11 0.50 ± 0.08 0.19 ± 0.02 0.52 ± 0.09 5.3 ± 0.2 171 ± 1 1.78 ± 0.08 24.2 ± 0.6 GSB-27大葱标准含量 2.60± 0.40 1.34 ± 0.16 0.52 ± 0.11 0.19 ± 0.02 0.59 ± 0.04 5.5± 0.3 173 ± 7 (1.9) 25 ± 1 注:“ ± ”后的数据为标准值的不确定度,“()”里的数值指参考值;表12同。 表 8 元素质量数
Table 8. Element mass
指标 Cr Pb Cd As Co Cu Ni Mn Zn 质量数 52 208 111 75 59 63 60 55 66 表 9 元素线性方程、相关系数、检测限
Table 9. Element linear equations,correlation coefficient, detect limit
元素 内标元素 回归方程 线性范围(μg/L) 相关系数r 检出限(μg/L) Cr 103 Rh y=0.0030x+0.0004 0~50.00 1.0000 0.038 Pb VIS y=0.0156x+0.0018 0~50.00 1.0000 0.024 As VIS y=0.0036x+0.000059 0~50.00 1.0000 0.052 Cd 103 Rh y=0.0010x+0.000003 0~50.00 1.0000 0.004 Co 72 Ge y=0.0783x+0.0008 0~50.00 0.9999 0.003 Cu 72 Ge y=0.0538x+0.0087 0~500.00 0.9999 0.051 Mn 72 Ge y=0.0367x+0.0323 0~500.00 1.0000 0.209 Ni 103 Rh y=0.0012x+0.0009 0~500.00 1.0000 0.323 Zn 103 Rh y=0.00065x+0.00087 0~1000.0 1.0000 0.400 表 10 加标回收率与精密度结果(n=9)
Table 10. The results of recovery rate of standard addition and precision (n=9)
元素 本底值
(μg/L)加标量
(μg/L)测定值
(μg/L)回收率
(%)平均回收率
(%)RSD
(%)Cr 0.77 1.00 1.81 104.0 101.6 2.49 5.00 5.56 99.0 25.0 26.25 101.9 Pb 1.39 1.00 2.43 104.0 101.9 2.09 5.00 6.12 99.8 25.0 26.25 101.9 As 0.07 1.00 1.03 98.0 99.1 1.44 5.00 5.00 98.6 25.0 25.24 100.7 Cd 0.03 1.00 0.96 101.5 101.7 1.58 5.00 4.68 100.2 25.0 25.87 103.4 Co 0.02 1.00 1.07 105.0 104.4 1.31 5.00 5.16 102.8 25.0 26.35 105.3 Cu 8.10 1.00 13.20 102.0 103.1 3.10 5.00 33.25 100.6 25.0 114.81 106.7 Mn 1.41 1.00 6.63 104.4 100.8 3.36 5.00 25.83 97.7 25.0 101.65 100.2 Ni 0.52 1.00 5.23 94.2 97.2 3.44 5.00 24.66 96.6 25.0 101.37 100.8 表 11 重复性度实验结果(n=6)
Table 11. The results of repeatability
元素 Cr Pb As Cd Co Cu Mn Ni Zn 含量(mg/kg) 0.022 0.0051 0.0038 0.00013 0.00020 0.34 0.069 0.0060 4.79 RSD(%) 1.31 2.10 0.01 0.05 1.61 0.20 4.62 0.55 0.38 表 12 准确度结果(n=6)
Table 12. The results of accuracy (n=6)
元素 GBW10050(GSB-28 大虾) GBW10049(GSB-27 大葱) 标准值(mg/kg) 测定值(x ± s,mg/kg) 标准值(mg/kg) 测定值(x ± s,mg/kg) Cr 0.35 ± 0.11 0.30± 0.08 2.60 ± 0.40 2.54 ± 0.11 Pb 0.20 ± 0.05 0.22 ± 0.04 1.34 ± 0.16 1.28 ± 0.30 As (2.5) 2.54 ± 0.11 0.52 ± 0.11 0.50 ± 0.24 Cd 0.039 ± 0.002 0.038 ± 0.002 0.19 ± 0.02 0.20 ± 0.11 Co 0.044 ± 0.005 0.043± 0.005 0.59 ± 0.04 0.56 ± 0.23 Cu 10.3 ± 0.7 10.2 ± 0.2 5.5 ± 0.3 5.57 ± 2.84 Mn 8.9 ± 0.3 9.0 ± 0.2 173 ± 7 171± 1 Ni (0.23) 0.24 ± 0.08 (1.9) 1.87 ± 0.87 Zn 76 ± 4 75 ± 2 25 ± 1 25±1 表 13 7种畜禽肉类样品的检测结果(x ± s ,mg/kg,n=3)
Table 13. Test results of 7 kinds of livestock and poultry meat samples (x ± s, mg/kg, n=3)
元素 牛肉 羊肉 猪肉 鹅肉 鸭肉 鸽子肉 鸡肉 Cr 0.045 ± 0.251 0.006 ± 0.011 0.089 ± 0.053 0.014 ± 0.062 0.005 ± 0.012 0.012 ± 0.021 0.023 ± 0.621 Pb 0.017 ± 0.134 0.008 ± 0.053 0.009 ± 0.051 0.021 ± 0.053 0.004 ± 0.482 0.013 ± 0.05 0.005 ± 0.661 As 0.028 ± 0.023 0.003 ± 0.012 0.005 ± 0.031 0.013 ± 0.021 0.009 ± 0.653 0.007 ± 0.652 0.004 ± 0.052 Cd 0.21 ± 0.04 0.0003 ± 0.0112 0.0003 ± 0.0221 0.002 ± 0.011 0.00031 ± 0.5211 0.00045 ± 0.2513 0.0001 ± 0.0621 Co 0.002 ± 0.081 0.002 ± 0.031 0.0006 ± 0.0312 0.002 ± 0.012 0.007 ± 0.521 0.002 ± 0.651 0.0003 ± 0.0521 Cu 0.55 ± 0.12 0.27 ± 0.15 0.69 ± 0.08 5.49 ± 0.62 6.51 ± 1.22 3.47 ± 0.25 0.34 ± 0.62 Mn 0.04 ± 0.05 0.02± 0.05 0.04 ± 0.05 0.24± 0.06 0.06 ± 0.06 0.28 ± 0.62 0.07 ± 0.40 Ni 0.007 ± 0.061 0.013 ± 0.092 0.006 ± 0.022 0.003 ± 0.021 − − − Zn 36.3 ± 2.45 40.9± 2.1 24.3 ± 1.6 14.2 ± 1.6 11.4 ± 2.2 10.3 ± 2.6 4.9 ± 1.5 注:“−”代表无检出。 表 14 肉类中铅、镉、砷、铬的限量指标
Table 14. Limits of lead, cadmium, arsenic and chromium in meat
元素 铅(以Pb计) 镉(以Cd计) 砷(以As计) 铬(以Cr计) 限量(mg/kg) ≤0.2 ≤0.1 ≤0.5 ≤1.0 注:“−”代表无检出。 -
[1] 梁伯衡, 张玉华, 黄婕, 等. 广州市城乡居民食物消费变化分析[J]. 预防医学情报杂志,2017,33(7):620−622. [2] 张玉华, 李迎月, 何洁仪, 等. 广州市居民食物消费与营养素摄入状况[J]. 中国公共卫生,2017,33(6):969−972. [3] 刘立婷, 陈希超, 于云江, 等. 广州市售水产品中重金属健康风险评价及消费建议[J]. 环境与健康杂志,2019,36(8):731−735. [4] 倪明龙, 周航, 罗立津. 广东省内珠江口海域深海鱼重金属富集特征及食用安全性评价[J]. 食品安全质量检测学报,2019,10(22):7798−7805. [5] 梁辉, 周少君, 戴光伟, 等. 2010~2014年广东省水产品中铅镉含量调查及评价[J]. 中国食品卫生杂志,2017,29(2):209−212. [6] 黄运茂, 江丹莉, 潘建秋, 等. 广东省规模化种鹅场养殖水体及鹅体组织重金属含量调查[J]. 中国家禽,2017,39(13):77−80. [7] 陈志良, 黄玲, 周存宇, 等. 广州市蔬菜中重金属污染特征研究与评价[J]. 环境科学,2017,38(1):389−398. [8] 张玉华, 刘于飞, 张维蔚, 等. 2014-2018年广州市市售食品中铝含量调查及人群膳食暴露评估[J]. 现代预防医学,2020,47(11):1967−1969,1974. [9] 江津津, 张挺, 刘慧娟, 等. 广州某社区部分市售猪内脏重金属镉含量的调查研究[J]. 广州城市职业学院学报,2019,13(3):63−67. doi: 10.3969/j.issn.1674-0408.2019.03.012 [10] 韦云, 周露. 2017年广东省薯类及膨化食品安全状况监督抽检结果分析[J]. 检验检疫学刊,2019,29(2):7−12. [11] Lian Chen, Shenglu Zhou, Yaxing Shi, et al. Heavy metals in food crops, soil, and water in the Lihe River watershed of the Taihu region and their potential health risks when ingested[J]. Science of the Total Environment,2018,615:141−149. doi: 10.1016/j.scitotenv.2017.09.230 [12] Jallad Karim N. Heavy metal exposure from ingesting rice and its related potential hazardous health risks to humans[J]. Environmental Science and Pollution Research International,2015,22(20):15449−15458. doi: 10.1007/s11356-015-4753-7 [13] Joseph K. Adu, Dzakadzie Fafanyo, Emmanuel Orman, et al. Assessing metal contaminants in milled maize products available on the Ghanaian market with Atomic Absorption Spectrometry and Instrumental Neutron Activation Analyser techniques[J]. Food Control,2020,109:106912. doi: 10.1016/j.foodcont.2019.106912 [14] 张政权, 黄冬梅, 杨光昕, 等. 微波消解-连续光源火焰原子吸收光谱法测定中华绒螯蟹腹部和腿部肌肉中8种金属元素[J]. 理化检验(化学分册),2020,56(6):719−722. [15] 吴金涛. 石墨炉原子吸收光谱法测定食品中铅、镉和铬的方法确认[J]. 山西农经,2020,47(11):155−156. [16] 郑明, 江明, 胡卫南, 徐付珍, 金情政. 原子吸收光谱法和原子荧光光谱法测定蜂产品中的重金属残留量[J]. 中国现代应用药学,2016,33(10):1297−1300. [17] Katarzyna Pytlakowska, Karina Kocot, Barbara Hachuła, et al. Determination of heavy metal ions by energy dispersive X-ray fluorescence spectrometry using reduced graphene oxide decorated with molybdenum disulfide as solid adsorbent[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2020,167:105846. doi: 10.1016/j.sab.2020.105846 [18] S. P. Boeykens, N. Redondo, R. Alvarado Obeso, et alz. Chromium and Lead adsorption by avocado seed biomass study through the use of total reflection X-ray fluorescence analysis[J]. Applied Radiation and Isotopes,2019,153:108809. doi: 10.1016/j.apradiso.2019.108809 [19] 王冬圻. 能量色散X射线荧光光谱法检测食品中金属元素的研究[D]. 哈尔滨: 东北农业大学, 2014. [20] Heshmatollah Ebrahimi-Najafabadi, Ardalan Pasdaran, Rasoul Rezaei Bezenjani, et al. Determination of toxic heavy metals in rice samples using ultrasound assisted emulsification microextraction combined with inductively coupled plasma optical emission spectroscopy[J]. Food Chemistry,2019,289:26−32. doi: 10.1016/j.foodchem.2019.03.046 [21] Michael Tan, Sudjadi Sudjadi, Astuti Astuti, et al. Quantitative analysis of some heavy metals in snake fruit by inductively coupled plasma-atomic emission spectroscopy[J]. Journal of Applied Pharmaceutical Science, 2018, 8(2): 44-48. [22] Karakka Kal Abdul Khader, Perwad Zubair, K Karatt Tajudheen, et al. Using inductively coupled plasma mass spectrometry to assess essential and performance-enhancing metals in the urine of racehorses[J]. Journal of analytical toxicology, 2020, 44(5): 490-498. [23] Steven Mc Geehan, Timothy Baszler, Cynthia Gaskill, et al. Interlaboratory comparison of heavy metal testing in animal diagnostic specimens and feed using inductively coupled plasma–mass spectrometry[J]. Journal of Veterinary Diagnostic Investigation,2020,32(2):291−300. doi: 10.1177/1040638720903115 [24] Rahmat Mohamed, Badrul Hisyam Zainudin, Abdul Syukor Yaakob. Method validation and determination of heavy metals in cocoa beans and cocoa products by microwave assisted digestion technique with inductively coupled plasma mass spectrometry[J]. Food Chemistry,2020,303:125392. doi: 10.1016/j.foodchem.2019.125392 [25] Sherif M Elgammal, Mona A Khorshed, Eman H Ismail. Determination of heavy metal content in whey protein samples from markets in Giza, Egypt, using inductively coupled plasma optical emission spectrometry and graphite furnace atomic absorption spectrometry: A probabilistic risk assessment study[J]. Journal of Food Composition and Analysis,2019,84:103300. doi: 10.1016/j.jfca.2019.103300 [26] 刘艳梅, 钟辉, 黄建芳, 等. 直接竞争ELISA检测大米样品中的重金属镉[J]. 免疫学杂志,2015,31(6):528−532. [27] 靳雪雪. 重金属汞的单克隆抗体制备及酶联免疫法的建立[D]. 南京: 南京财经大学, 2019. [28] 郝代玲, 黄建芳, 杨浩, 等. 重金属铜的单抗的制备及免疫学检测方法的建立[J]. 食品工业科技,2017,38(19):245−248, 255. [29] 郭捷, 张林, 刘国红. 电感耦合等离子体质谱法测定血液透析用水中15种金属元素[J]. 分析仪器,2014,54(4):56−59. doi: 10.3969/j.issn.1001-232x.2014.04.015 [30] 欧阳珮珮, 吴惠刚, 周日东, 等. 压力罐消解ICP-MS法测定干豆中微量元素[J]. 中国卫生检验杂志,2013,23(4):833−835. [31] GB 2762—2017《食品安全国家标准 食品中污染物限量》[J]. 中国食品卫生杂志, 2018, 30(3): 329−340. -