超声辅助低共熔溶剂萃取法在活性成分提取与食品分析预处理中应用的研究进展

刘金铭 王辉 张欢 陈倩 孔保华

刘金铭,王辉,张欢,等. 超声辅助低共熔溶剂萃取法在活性成分提取与食品分析预处理中应用的研究进展[J]. 食品工业科技,2021,42(7):399−407. doi:  10.13386/j.issn1002-0306.2020050362
引用本文: 刘金铭,王辉,张欢,等. 超声辅助低共熔溶剂萃取法在活性成分提取与食品分析预处理中应用的研究进展[J]. 食品工业科技,2021,42(7):399−407. doi:  10.13386/j.issn1002-0306.2020050362
LIU Jinming, WANG Hui, ZHANG Huan, et al. Research Progress on Extraction of Active Ingredients and Pretreatment of Food Analysis by Ultrasound-Assisted Deep Eutectic Solvent Method[J]. Science and Technology of Food Industry, 2021, 42(7): 399−407. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020050362
Citation: LIU Jinming, WANG Hui, ZHANG Huan, et al. Research Progress on Extraction of Active Ingredients and Pretreatment of Food Analysis by Ultrasound-Assisted Deep Eutectic Solvent Method[J]. Science and Technology of Food Industry, 2021, 42(7): 399−407. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020050362

超声辅助低共熔溶剂萃取法在活性成分提取与食品分析预处理中应用的研究进展

doi: 10.13386/j.issn1002-0306.2020050362
基金项目: 黑龙江省“百千万”工程重大科技专项(2019ZX07B03)
详细信息
    作者简介:

    刘金铭(1997−),女,硕士研究生,研究方向:畜产品加工,E-mail:liujm97@163.com

    通讯作者:

    孔保华(1963−),女,博士,教授,研究方向:畜产品加工,E-mail:kongbh@163.com

  • 中图分类号: TS207.3

Research Progress on Extraction of Active Ingredients and Pretreatment of Food Analysis by Ultrasound-Assisted Deep Eutectic Solvent Method

  • 摘要: 低共熔溶剂(deep eutectic solvent,DES)是由氢键受体(hydrogen-bond acceptor,HBA)与氢键供体(hydrogen-bond donor,HBD)以一定摩尔比组成的混合物。由于内部分子间氢键的相互作用使整个体系的熔点降低,并低于单个组分。它是一种无毒、廉价、制备简单和可生物降解的绿色溶剂,并且可以从不同的食品基质中萃取化学成分。目前DES与超声技术结合已经成为了食品行业新兴的萃取方式。本文简述了低共熔溶剂的分类、制备方法、超声辅助低共熔溶剂萃取过程的影响因素,并综述此方法在提取活性成分与食品分析预处理中的最新应用进展。
  • 图  1  研磨法制备低共熔溶剂[15]

    Figure  1.  Prepared deep eutectic solvent by grinding method[15]

    图  2  超声辅助低共熔溶剂萃取原理示意图

    Figure  2.  Schematic of ultrasonic assisted extraction-deep eutectic solvent

    表  1  低共熔溶剂的分类[12]

    Table  1.   Classification of deep eutectic solvents[12]

    DES种类公式示例
    ICat + X  + zMClxM (Zn, In, Sn, Al, Fe)
    IICat + X  + zMClx• yH2OM (Cr, Ni, Cu, Fe, Co)
    IIICat+X + zRZZ (OH, COOH, CONH2)
    IVMClx + zRZM (Zn, Al)
    下载: 导出CSV

    表  2  超声辅助低共熔溶剂法预处理食品中农药残留与部分方法的对比

    Table  2.   Comparison between UAE-DES and partial method for pretreatment of pesticide residues in food

    农药种类方法样品源线性范围检测限平均回收率(%)参考文献
    有机磷农药搅拌棒吸附萃取果汁3~1000 ng/mL0.3 ng/mL[55]
    有机溶剂微萃取果汁3.30~500 ng/mL1 ng/mL[56]
    多壁碳纳米管-固相萃取1~500 ng/mL0.0010 ng/mL[57]
    超声辅助低共熔溶剂液-液微萃取果汁1~500 ng/mL0.070 ng/mL87.3~116.7[52]
    毒死蜱中空纤维微孔膜液-液萃取果汁200~10000 ng/mL70 ng/mL[58]
    搅拌棒吸附萃取果汁1~1000 ng/mL1 ng/mL[55]
    气动雾化单滴微萃取5~500 ng/mL1.6 ng/mL[59]
    微波辅助分散液-液微萃取3~40000 ng/mL0.74 ng/mL82.3~98.2[60]
    有机溶剂微萃取果汁3.96~500 ng/mL1.2 ng/mL[56]
    多壁碳纳米管-固相萃取1~500 ng/mL0.0042 ng/mL[57]
    离子液体-分散液-液微萃取27.2~1089.0 ng/mL5 ng/mL87.3~117.6[61]
    超声辅助低共熔溶剂液-液微萃取果汁2~500 ng/mL0.096 ng/mL87.3~116.7[52]
    磺胺类农药液相色谱-荧光法鸡肉/鸡蛋17.5~1000 µg/kg4.1~25.6 µg/kg65.9~88.1[62]
    固相萃取蜂蜡1~2 µg/kg65.2~117.8[63]
    液-液萃取鸡肉/鸡蛋85.8~108.1[64]
    磁性固相萃取牛奶50~120 µg/kg73.4~91.2[65]
    超声辅助低共熔溶剂液-液微萃取果汁0.1~50 µg/mL0.02~0.05 µg/mL88.1~97.8[53]
    下载: 导出CSV
  • [1] Mbous Y P, Hayyan M, Hayyan A, et al. Applications of deep eutectic solvents in biotechnology and bioengineering—promises and challenges[J]. Biotechnology Advances,2017,35(2):105−134. doi:  10.1016/j.biotechadv.2016.11.006
    [2] Ventura S P M, Silva F A E, Quental M V, et al. Ionic-liquid-mediated extraction and separation processes for bioactive compounds: Past, present, and future trends[J]. Chemical Reviews,2017,111(10):6984−7052.
    [3] 王丽, 刘红芝, 刘丽, 等. 离子液体在食品加工领域中应用研究进展[J]. 食品研究与开发,2017,38(14):200−204. doi:  10.3969/j.issn.1005-6521.2017.14.043
    [4] Abbott A P, Capper G, Davies D L, et al. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains[J]. Chemical Communications,2001(19):2010−2011. doi:  10.1039/b106357j
    [5] Tang B, Zhang H, Row K H. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples[J]. Journal of Separation Science,2015,38(6):1053−1064. doi:  10.1002/jssc.201401347
    [6] Kareem M A, Mjalli F S, Hashim M A, et al. Phosphonium-based ionic liquids analogues and their physical properties[J]. Journal of Chemical & Engineering Data,2010,55(11):4632−4637.
    [7] Perna F M, Vitale P, Capriati V. Deep eutectic solvents and their applications as green solvents[J]. Current Opinion in Green and Sustainable Chemistry,2020,21:27−33. doi:  10.1016/j.cogsc.2019.09.004
    [8] Alkhatib I I I, Bahamon D, Llovell F, et al. Perspectives and guidelines on thermodynamic modelling of deep eutectic solvents[J]. Journal of Molecular Liquids,2020,298:112183. doi:  10.1016/j.molliq.2019.112183
    [9] Chandran D, Khalid M, Walvekar R, et al. Deep eutectic solvents for extraction-desulphurization: A review[J]. Journal of Molecular Liquids,2019,275:312−322. doi:  10.1016/j.molliq.2018.11.051
    [10] Sitze M S, Schreiter E R, Patterson E V, et al. Ionic liquids based on FeCl3 and FeCl2. raman scattering and ab initio calculations[J]. Inorganic Chemistry,2001,40(10):2298−2304. doi:  10.1021/ic001042r
    [11] María F, Bruinhorst A V D, Kroon M C. New natural and renewable low transition temperature mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing[J]. Green Chemistry,2012,14:2153−2157. doi:  10.1039/c2gc35660k
    [12] Smith E L, Abbott A P, Ryder K S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews,2014,114(21):11060−11082. doi:  10.1021/cr300162p
    [13] Zhao H, Baker G A, Holmes S. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel[J]. Organic & Biomolecular Chemistry,2011,9(6):1908.
    [14] Gutiérrez M C, Rubio F, Delmonte F. Resorcinol-formaldehyde polycondensation in deep eutectic solvents for the preparation of carbons and carbon-carbon nanotube composites[J]. Chemistry of Materials,2010,22(9):2711−2719. doi:  10.1021/cm9023502
    [15] Florindo C, Oliveira F S, Rebelo L P N, et al. Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids[J]. ACS Sustainable Chemistry & Engineering,2014,2(10):2416−2425.
    [16] Gutiérrez M C, Ferrer M L, Mateo C R, et al. Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures[J]. Langmuir,2009,25(10):5509−5515. doi:  10.1021/la900552b
    [17] DaI Y, Van S J, Witkamp G J, et al. Natural deep eutectic solvents as new potential media for green technology[J]. Analytica Chimica Acta,2013,766:61−68. doi:  10.1016/j.aca.2012.12.019
    [18] Choi Y H, Spronsen J V, Dai Y T, et al. Are natural deep eutectic solvents the missing link in un-derstanding cellular metabolism and physiology?[J]. Plant Physiol,2011,156(4):1701−1705. doi:  10.1104/pp.111.178426
    [19] 刘远方, 李萌萌, 刘远晓, 等. 功率超声波及其在食品工业中的降解应用研究进展[J]. 食品与发酵工业,2018,44(10):287−293.
    [20] Esclapez M D, García-pérez J V, Mulet A, et al. Ultrasound-assisted extraction of natural products[J]. Food Engineering Reviews,2011,3(2):108−120. doi:  10.1007/s12393-011-9036-6
    [21] Zhang Z S, Wang L J, LI D, et al. Ultrasound-assisted extraction of oil from flaxseed[J]. Separation and Purification Technology,2008,62(1):192−198. doi:  10.1016/j.seppur.2008.01.014
    [22] Zhang L J, Wang M S. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb[J]. International Journal of Biological Macromolecules,2017,95:675−681. doi:  10.1016/j.ijbiomac.2016.11.096
    [23] Al-dhabI N A, Ponmurugan K, Maran P. Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds[J]. Ultrasonics Sonochemistry,2017,34:206−213. doi:  10.1016/j.ultsonch.2016.05.005
    [24] Santos H M, Lodeiro C, Capelo-Martínez J L. José-Luis Capelo-Martínez (Ed.): Ultrasound in chemistry. Analytical applications[J]. Analytical and Bioanalytical Chemistry,2009,395(3):543−544. doi:  10.1007/s00216-009-2973-8
    [25] Hernández-Corroto E, Plaza M, Marina L M, et al. Sustainable extraction of proteins and bioactive substances from pomegranate peel (Punica granatum L.) using pressurized liquids and deep eutectic solvents[J]. Innovative Food Science & Emerging Technologies,2020,60:102314.
    [26] Liu X Y, Liu C R, Qian H, et al. Ultrasound-assisted dispersive liquid-liquid microextraction based on a hydrophobic deep eutectic solvent for the preconcentration of pyrethroid insecticides prior to determination by high-performance liquid chromatography[J]. Microchemical Journal,2019,146:614−621. doi:  10.1016/j.microc.2019.01.048
    [27] Hsieh Y H, Li Y B, Pan Z C, et al. Ultrasonication-assisted synthesis of alcohol-based deep eutectic solvents for extraction of active compounds from ginger[J]. Ultrasonics Sonochemistry,2020,63:104915. doi:  10.1016/j.ultsonch.2019.104915
    [28] Bajkacz S, Adamek J. Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products[J]. Talanta,2017,168:329−335. doi:  10.1016/j.talanta.2017.02.065
    [29] Shah D, Mjalli F S. Effect of water on the thermo-physical properties of reline: an experimental and molecular simulation based approach[J]. Physical Chemistry Chemical Physics,2014,16(43):23900−23907. doi:  10.1039/C4CP02600D
    [30] Alomar M K, Hayyan M, Alsaadi M A, et al. Glycerol-based deep eutectic solvents: Physical properties[J]. Journal of Molecular Liquids,2016,215:98−103. doi:  10.1016/j.molliq.2015.11.032
    [31] Yadav A, Trivedi S, Rai R, et al. Densities and dynamic viscosities of (choline chloride+glycerol) deep eutectic solvent and its aqueous mixtures in the temperature range (283.15–363.15)K[J]. Fluid Phase Equilibria,2014,367:135−142. doi:  10.1016/j.fluid.2014.01.028
    [32] Abbott A P, Barron J C, Frisch G, et al. Double layer effects on metal nucleation in deep eutectic solvents[J]. Physical Chemistry Chemical Physics,2011,13(21):10224−10231. doi:  10.1039/c0cp02244f
    [33] Abbott A P, Harris R C, Ryder K S, et al. Glycerol eutectics as sustainable solvent systems[J]. Green Chemistry,2011,13:82−90. doi:  10.1039/C0GC00395F
    [34] Mjalli F M, Naser J, Jibril B, et al. Tetrabutylammonium chloride based ionic liquid analogues and their physical properties[J]. Journal of Molecular Liquids,2017,241:500−510. doi:  10.1016/j.molliq.2017.06.024
    [35] Zhu S, Zhou J, Jia H, et al. Liquid–liquid microextraction of synthetic pigments in beverages using a hydrophobic deep eutectic solvent[J]. Food Chemistry,2018,243:351−356. doi:  10.1016/j.foodchem.2017.09.141
    [36] Zhang Q, Karine D O V, Royer Sébastien, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chemical Society Reviews,2012,41(21):7108. doi:  10.1039/c2cs35178a
    [37] Zhu J H, Yu K K, Zhu Y G, et al. Physicochemical properties of deep eutectic solvents formed by choline chloride and phenolic compounds at T=(293.15 to 333.15)K: The influence of electronic effect of substitution group[J]. Journal of Molecular Liquids,2017,232:182−187. doi:  10.1016/j.molliq.2017.02.071
    [38] Hayyan A, MjalliF S, AlNashef I M, et al. Fruit sugar-based deep eutectic solvents and their physical properties[J]. Thermochim Acta,2012,541:70e75.
    [39] Amodio M L, Derossi A, Colelli G. Modelling sensorial and nutritional changes to better define quality and shelf life of fresh-cut melons[J]. Journal of Agricultural Engineering,2013,43:1−6. doi:  10.4081/jae.2013.e1
    [40] Dai Y, Rozema E, Verpoorte R, et al. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents[J]. Journal of Chromatography A,2016,1434:50−56. doi:  10.1016/j.chroma.2016.01.037
    [41] Barbieri J B, Goltz C, Cavalheiro F B, et al. Deep eutectic solvents applied in the extraction and stabilization of rosemary (Rosmarinus officinalis L.) phenolic compounds[J]. Industrial Crops and Products,2020,144:112049. doi:  10.1016/j.indcrop.2019.112049
    [42] Wu L F, Li L, Chen S J, et al. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity[J]. Separation and Purification Technology,2020,247:117014. doi:  10.1016/j.seppur.2020.117014
    [43] Saha S K, Dey S, Chakraborty R. Effect of choline chloride-oxalic acid based deep eutectic solvent on the ultrasonic assisted extraction of polyphenols from Aegle marmelos[J]. Journal of Molecular Liquids,2019,287:110956. doi:  10.1016/j.molliq.2019.110956
    [44] 钟建青, 李波, 贾琦, 等. 天然黄酮类化合物及其衍生物的构效关系研究进展[J]. 药学学报,2011,46(6):622−630.
    [45] Mansur A R, Song N, Jang H W, et al. Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts[J]. Food Chemistry,2019,293:438−445. doi:  10.1016/j.foodchem.2019.05.003
    [46] Ali M C, Chen J, Zhang H J, et al. Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction[J]. Talanta,2019,203:16−22. doi:  10.1016/j.talanta.2019.05.012
    [47] 孔方, 李莉, 刘言娟. 超声辅助低共熔溶剂提取苹果叶中的总黄酮[J/OL]. 食品工业科技: 1-15[2020-05-20]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200311.1847.015.html.
    [48] 张梓原, 徐伟, 王鑫, 等. 黄精多糖的提取工艺对比研究[J]. 包装工程,2020,41(9):51−58.
    [49] Li N, Wang Y Z, Xu K J, et al. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein[J]. Talanta,2016,152:23−32. doi:  10.1016/j.talanta.2016.01.042
    [50] Damalas C A, Eleftherohorinos I G. Pesticide exposure, safety issues, and risk assessment indicators[J]. Public Health,2011,8(5):1402−1419.
    [51] Ostovan A, Ghaedi M, Arabi M, et al. Hydrophilic multi-template molecularly imprinted biopolymers based on a green synthesis strategy for determination of B-family vitamins[J]. ACS Applied Materials & Interfaces,2018,10(4):4140−4150.
    [52] Heidari H, Ghanbari-rad S, Habibi E. Optimization deep eutectic solvent-based ultrasound-assisted liquid-liquid microextraction by using the desirability function approach for extraction and preconcentration of organophosphorus pesticides from fruit juice samples[J]. Journal of Food Composition and Analysis,2020,87:103389. doi:  10.1016/j.jfca.2019.103389
    [53] Ji Y H, Meng Z R, Zhao J, et al. Eco-friendly ultrasonic assisted liquid–liquid microextraction method based on hydrophobic deep eutectic solvent for the determination of sulfonamides in fruit juices[J]. Journal of Chromatography A,2020,1609:460520. doi:  10.1016/j.chroma.2019.460520
    [54] Zhao J, Meng Z R, Zhao Z X, et al. Ultrasound-assisted deep eutectic solvent as green and efficient media combined with functionalized magnetic multi-walled carbon nanotubes as solid-phase extraction to determine pesticide residues in food products[J]. Food Chemistry,2019,310:125863.
    [55] Ayazi Z, Jaafarzadeh R. Graphene oxide/polyamide nanocomposite as a novel stir bar coating for sorptive extraction of organophosphorous pesticides in fruit juice and vegetable samples[J]. Chromatographia,2017,80(9):1411−1422. doi:  10.1007/s10337-017-3364-5
    [56] Peyrovi M, Hadjmohammadi M. Alkanol-based supramolecular solvent microextraction of organophosphorus pesticides and their determination using high-performance liquid chromatography[J]. Journal of the Iranian Chemical Society,2017,14(5):995−1004. doi:  10.1007/s13738-017-1049-5
    [57] Hadjmohammadi M R, Peyrovi M, Biparva P. Comparison of C18silica and multi-walled carbon nanotubes as the adsorbents for the solid-phase extraction of chlorpyrifos and phosalone in water samples using HPLC[J]. Journal of Separation Science,2010,33(8):1044−1051. doi:  10.1002/jssc.200900494
    [58] Bedendo G C, Jardim I C S F, Carasek E. Multiresidue determination of pesticides in industrial and fresh orange juice by hollow fiber microporous membrane liquid–liquid extraction and detection by liquid chromatography–electrospray-tandem mass spectrometry[J]. Talanta,2012,88:573−580. doi:  10.1016/j.talanta.2011.11.037
    [59] Wang Y, Wang Z, Zhang H, et al. Application of pneumatic nebulization single-drop microextraction for the determination of organophosphorous pesticides by gas chromatography–mass spectrometry[J]. Journal of Separation Science,2011,34(15):1880−1885. doi:  10.1002/jssc.201100230
    [60] Farajzadeh M A, Asghari A, Feriduni B. An efficient, rapid and microwave-accelerated dispersive liquid–liquid microextraction method for extraction and pre-concentration of some organophosphorus pesticide residues from aqueous samples[J]. Journal of Food Composition & Analysis,2016,48:78−80.
    [61] He L, Luo X, Xie H, et al. Ionic liquid-based dispersive liquid–liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample[J]. Journal of Chromatography A,2009,655:52−59.
    [62] Huertas-Pérez, José Fernando, Arroyo-Manzanares N, et al. Method optimization and validation for the determination of eight sulfonamides in chicken muscle and eggs by modified QuEChERS and liquid chromatography with fluorescence detection[J]. Journal of Pharmaceutical & Biomedical Analysis,2016,124:261−266.
    [63] Mitrowska K, Antczak M. Determination of sulfonamides in beeswax by liquid chromatography coupled to tandem mass spectrometry[J]. Journal of Chromatography B,2015,1006:179−186. doi:  10.1016/j.jchromb.2015.10.040
    [64] Premarathne J M K J K, Satharasinghe D A, Gunasena A R C, et al. Establishment of a method to detect sulfonamide residues in chicken meat and eggs by high-performance liquid chromatography[J]. Food Control,2015,72:276−282.
    [65] Wang Y, Liu L, Xiao C, et al. Rapid determination of trace sulfonamides in milk by graphene oxide-based magnetic solid phase extraction coupled with HPLC–MS/MS[J]. Food Analytical Methods,2016,9(9):2521−2530. doi:  10.1007/s12161-016-0433-6
    [66] 郭美娟, 刘晓光, 史国华, 等. 食品中人工食用色素安全性[J]. 食品工业,2020,41(3):332−336.
    [67] Kanberoglu G S, Yilmaz E, Soylak M. Developing a new and simple ultrasound-assisted emulsification liquid phase microextraction method built upon deep eutectic solvents for Patent blue V in syrup and water samples[J]. Microchemical Journal,2019,145:813−818. doi:  10.1016/j.microc.2018.11.053
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  13
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 网络出版日期:  2021-01-28
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回

    重要通知

    4月19-23日刊社在上海举办第四届食品科技创新论坛,届时编辑部电话无人接听,敬请谅解。