海藻酸钠裂解酶酶活测定方法研究

郑明亮 郑诨龙 孟春 王航

郑明亮,郑诨龙,孟春,等. 海藻酸钠裂解酶酶活测定方法研究[J]. 食品工业科技,2021,42(7):246−251. doi:  10.13386/j.issn1002-0306.2020050180
引用本文: 郑明亮,郑诨龙,孟春,等. 海藻酸钠裂解酶酶活测定方法研究[J]. 食品工业科技,2021,42(7):246−251. doi:  10.13386/j.issn1002-0306.2020050180
ZHENG Mingliang, ZHENG Hunlong, MENG Chun, et al. Study on the Test of Sodium Alginate Lyase Activity [J]. Science and Technology of Food Industry, 2021, 42(7): 246−251. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020050180
Citation: ZHENG Mingliang, ZHENG Hunlong, MENG Chun, et al. Study on the Test of Sodium Alginate Lyase Activity [J]. Science and Technology of Food Industry, 2021, 42(7): 246−251. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020050180

海藻酸钠裂解酶酶活测定方法研究

doi: 10.13386/j.issn1002-0306.2020050180
基金项目: 福州大学国家环境光催化工程技术研究中心开放课题(NERCEP-201906)
详细信息
    作者简介:

    郑明亮(1994−),男,硕士研究生,研究方向:酶学,发酵工程,E-mail:zml1209@126.com

    通讯作者:

    王航(1977−),男,博士,副教授,研究方向:发酵工程,E-mail:whbio@foxmail.com

  • 中图分类号: Q814.9

Study on the Test of Sodium Alginate Lyase Activity

  • 摘要: 应用酶反应动力学原理对海藻酸钠裂解酶酶活测定反应体系和反应条件进行系统研究,以改进海藻酸钠裂解酶的测定方法。本实验采用紫外吸收法测定酶活,改良后的酶活测定方法为:300 μL底物溶液(海藻酸钠2.2%,KCl 5 mmol/L,0.1 mol/L Na2HPO4-NaH2PO4缓冲液,pH7.0)加入50 μL稀释至2.4~30 U/mL的酶液,于37 ℃水浴静置反应20 min后用冰浴终止反应,反应液稀释20倍后在235 nm处测定吸光度。每份底物溶液均需用新枪头移取以提高精密度,使移液误差小于2%。本酶活测定方法的相对标准偏差小于5%。
  • 图  1  Lineweaver-Burk 法计算Km、Vm

    Figure  1.  Lineweaver-Burk method to calculate Km, Vm

    图  2  酶添加量对产物生成的影响

    Figure  2.  Effect of enzyme addition on product

    图  3  酶促反应速率与反应时间的关系

    Figure  3.  Relationship between enzymatic reaction rate and reaction time

    图  4  冰浴终止酶解反应的效果

    注:“***”表示极显著(P<0.001);“*”表示显著(P<0.05);“ns”表示没有显著性差异。

    Figure  4.  The effect of ice bath to terminate the enzymatic hydrolysis reaction

    图  5  海藻酸钠裂解酶在不同pH条件下的反应速率

    Figure  5.  Reaction rate of sodium alginate lyase under different pH conditions

    图  6  海藻酸钠裂解酶在不同温度条件下的反应速率

    Figure  6.  Reaction rate of sodium alginate lyase under different temperature conditions

    图  7  金属离子对海藻酸钠裂解酶酶反应速率的影响

    注:“**”表示较显著(P<0.01);“*”表示显著(P<0.05)。

    Figure  7.  Effect of metal ions on the reaction rate of sodium alginate lyase

    图  8  传质速度对酶活测定的影响

    注:“ns”表示没有显著性差异。

    Figure  8.  Effect of mass transfer speed on enzyme activity determination

    图  9  不同条件对底物移取的精密性影响

    Figure  9.  The influence of different conditions on the precision of substrate removal

    表  1  海藻酸钠裂解酶酶活测定的精密度试验(n=8)

    Table  1.   Precision test for determination of enzyme activity of sodium alginate lyase (n=8)

    酶活测定值(U/mL)平均值(U/mL)SD标准偏差(U/mL)RSD相对标准偏差(%)
    161~1811707.724.54
    下载: 导出CSV
  • [1] 孙小越. 海洋来源褐藻胶裂解酶的异源表达和规模化制备研究[D]. 上海: 华东理工大学, 2018.
    [2] 侯保兵, 刘书来, 张建友, 等. 褐藻胶裂解酶产生菌的发酵优化研究[J]. 水产科学,2009,28(11):667−670. doi:  10.3969/j.issn.1003-1111.2009.11.013
    [3] 江晓路, 刘岩, 胡晓珂, 等. Vibrio sp. 510产褐藻胶裂合酶的底物专一性分析[J]. 中国海洋大学学报(自然科学版),2004(1):55−59.
    [4] 罗丹丹. 产褐藻胶裂解酶菌种筛选与酶学性质研究[D]. 大连: 大连工业大学, 2016.
    [5] Li H, Wang S, Zhang Y, et al. High-level expression of a thermally stable alginate lyase using pichia pastoris, characterization and application in producing brown alginate oligosaccharide[J]. Marine Drugs,2018,16(5):158. doi:  10.3390/md16050158
    [6] Chen Y, Dou W, Li H, et al. The alginate lyase from Isoptericola halotolerans CGMCC 5336 as a new tool for the production of alginate oligosaccharides with guluronic acid as reducing end[J]. Carbohydr Res,2018,470:36−41. doi:  10.1016/j.carres.2018.06.005
    [7] Takeshita S, Oda T. Usefulness of alginate lyases derived from marine organisms for the preparation of alginate oligomers with various bioactivities[J]. Advances in Food and Nutrition Research,2016,79:137.
    [8] Xing M, Cao Q, Wang Y, et al. Advances in research on the bioactivity of alginate oligosaccharides[J]. Marine Drugs,2020,18(3):144. doi:  10.3390/md18030144
    [9] Chen Y, Li J, Huang Z, et al. Impact of short-term application of seaweed fertilizer on bacterial diversity and community structure, soil nitrogen contents, and plant growth in maize rhizosphere soil[J]. Folia Microbiologica,2020.
    [10] Li S, Wang Z, Wang L, et al. Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides fromLaminaria japonica[J]. Bioresource Technology,2019,281:84−89. doi:  10.1016/j.biortech.2019.02.056
    [11] Han Y, Zhang L, Yu X, et al. Alginate oligosaccharide attenuates alpha2, 6-sialylation modification to inhibit prostate cancer cell growth via the Hippo/YAP pathway[J]. Cell Death Dis,2019,10(5):374. doi:  10.1038/s41419-019-1560-y
    [12] Zhou R, Shi X Y, Bi D C, et al. Alginate-derived oligosaccharide inhibits neuroinflammation and promotes microglial phagocytosis of beta-amyloid[J]. Mar Drugs,2015,13(9):5828−5846. doi:  10.3390/md13095828
    [13] Tondervik A, Sletta H, Klinkenberg G, et al. Alginate oligosaccharides inhibit fungal cell growth and potentiate the activity of antifungals against Candida andAspergillus spp[J]. PLoS One,2014,9(11):e112518. doi:  10.1371/journal.pone.0112518
    [14] Chi F C, Kulkarni S S, Zulueta M M, et al. Synthesis of alginate oligosaccharides containing L-guluronic acids[J]. Chem Asian J,2009,4(3):386−390. doi:  10.1002/asia.200800406
    [15] Shang Q, Jiang H, Cai C, et al. Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview[J]. Carbohydr Polym,2018,179:173−185. doi:  10.1016/j.carbpol.2017.09.059
    [16] Xu X, Wu X, Wang Q, et al. Immunomodulatory effects of alginate oligosaccharides on murine macrophage RAW264.7 cells and their structure-activity relationships[J]. J Agric Food Chem,2014,62(14):3168−3176. doi:  10.1021/jf405633n
    [17] Xu X, Bi D, Wu X, et al. Unsaturated guluronate oligosaccharide enhances the antibacterial activities of macrophages[J]. FASEB J,2014,28(6):2645−2654. doi:  10.1096/fj.13-247791
    [18] Hurwitz J, Weissbach A. The formation of 2-keto-3-deoxyheptonic acid in extracts ofEscherichia coli B. I. Identification[J]. J Biol Chem,1959,234(4):705−709. doi:  10.1016/S0021-9258(18)70158-0
    [19] Zhu B, Tan H, Qin Y, et al. Characterization of a new endo-type alginate lyase from Vibrio sp. W13[J]. Int J Biol Macromol,2015,75:330−337. doi:  10.1016/j.ijbiomac.2015.01.053
    [20] Li S, Wang L, Hao J, et al. Purification and characterization of a new alginate lyase from marine bacterium Vibrio sp. SY08[J]. Mar Drugs,2016,15(1):1.
    [21] Sawabe T, Ohtsuka M, Ezura Y. Novel alginate lyases from marine bacterium Alteromonas sp. strain H-4[J]. Carbohydr Res,1997,304(1):69−76. doi:  10.1016/S0008-6215(97)00194-8
    [22] Stevens R A, Levin R E. Purification and characteristics of an alginase from Alginovibrio aquatilis[J]. Appl Environ Microbiol,1977,33(5):1156−1161. doi:  10.1128/AEM.33.5.1156-1161.1977
    [23] Miyake O, Hashimoto W, Murata K. An exotype alginate lyase in Sphingomonas sp. A1: overexpression in Escherichia coli, purification, and characterization of alginate lyase IV (A1-IV)[J]. Protein Expr Purif,2003,29(1):33−41. doi:  10.1016/S1046-5928(03)00018-4
    [24] 李云涛, 张齐, 汪立平, 等. 海洋弧菌中褐藻胶裂解酶Alg的克隆表达及酶学性质[J]. 山东农业大学学报(自然科学版),2018,49(4):659−666.
    [25] 高洁, 李益民, 杜聪, 等. 褐藻胶裂解酶基因的克隆表达与酶学性质[J]. 生物工程学报,2018,34(7):1178−1188.
    [26] 金虎. 毕赤酵母高效发酵生产猪α干扰素过程的优化与代谢调控[D]. 无锡: 江南大学, 2011.
    [27] 邰宏博. 海藻酸裂解酶在巴斯德毕赤酵母中的表达及酶性质研究[D]. 昆明: 昆明理工大学, 2014.
    [28] 李建伟. 海洋细菌Pseudoalteromonas sp. SM0524分泌的褐藻酸裂解酶的研究[D]. 济南: 山东大学, 2011.
    [29] Swift S M, Hudgens J W, Heselpoth R D, et al. Characterization of AlgMsp, an alginate lyase from Microbulbifer sp. 6532A[J]. PLoS One,2014,9(11):e112939. doi:  10.1371/journal.pone.0112939
    [30] 肖琼, 肖安风, 姚德恒, 等. 琼胶酶水解工艺条件的优化及产物分析[J]. 中国食品学报,2015,15(12):99−106.
    [31] 韩伟, 许鑫琦, 叶秀云, 等. 海洋来源褐藻胶裂解酶分离纯化及酶学性质研究[J]. 福州大学学报(自然科学版),2018,46(1):136−142.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  11
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 网络出版日期:  2021-01-28
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回

    重要通知

    4月19-23日刊社在上海举办第四届食品科技创新论坛,届时编辑部电话无人接听,敬请谅解。