Fe3O4@ZrO2磁纳米粒子在酪蛋白磷酸肽富集中的应用

潘玉婷 杨静 严新宇 李娜

潘玉婷,杨静,严新宇,等. Fe3O4@ZrO2磁纳米粒子在酪蛋白磷酸肽富集中的应用[J]. 食品工业科技,2021,42(20):223−228. doi:  10.13386/j.issn1002-0306.2020030404
引用本文: 潘玉婷,杨静,严新宇,等. Fe3O4@ZrO2磁纳米粒子在酪蛋白磷酸肽富集中的应用[J]. 食品工业科技,2021,42(20):223−228. doi:  10.13386/j.issn1002-0306.2020030404
PAN Yuting, YANG Jing, YAN Xinyu, et al. Application of Fe3O4@ZrO2 Magnetic Nanoparticles in the Selective Enrichment of Casein Phosphopeptides[J]. Science and Technology of Food Industry, 2021, 42(20): 223−228. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020030404
Citation: PAN Yuting, YANG Jing, YAN Xinyu, et al. Application of Fe3O4@ZrO2 Magnetic Nanoparticles in the Selective Enrichment of Casein Phosphopeptides[J]. Science and Technology of Food Industry, 2021, 42(20): 223−228. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020030404

Fe3O4@ZrO2磁纳米粒子在酪蛋白磷酸肽富集中的应用

doi: 10.13386/j.issn1002-0306.2020030404
详细信息
    作者简介:

    潘玉婷(1991−),女,本科,助理工程师,研究方向:食品生物技术,E-mail:panyuting001@126.com

  • 中图分类号: TS201.1

Application of Fe3O4@ZrO2 Magnetic Nanoparticles in the Selective Enrichment of Casein Phosphopeptides

  • 摘要: 本实验将制备好的Fe3O4@ZrO2磁性纳米粒子作为载体,对经胰蛋白酶消化后的酪蛋白磷酸肽(Casein Phosphopeptides,CPP)进行高效地选择性富集。实验以CPP的N/P(摩尔比)以及磁纳米粒子吸附量为评价指标,进行单因素实验以便选取较优的实验因素,分析酪蛋白水解度、吸附pH、吸附时间、吸附温度及肽溶液初始浓度这五个因素对Fe3O4@ZrO2磁性纳米粒子选择性吸附CPP的能力的影响,优化CPP富集的技术参数。结果表明,磁性材料最佳富集工艺系数为:酪蛋白的水解度为22%,反应pH=4.5,吸附温度为30 ℃,吸附时间为50 min,肽溶液初始浓度为50 mg/mL;在此条件下,可得到N/P(摩尔比)为4.87的CPP,磁纳米粒子的吸附量为94.37 mg/g,且用NaOH(pH13)溶液进行解析,CPP的洗脱率可达95%以上。综上,Fe3O4@ZrO2磁性纳米粒子呈现出优异的选择性富集CPP的潜力,对高质量高纯度CPP 的生产具有重要的指导意义。
  • 图  1  Fe3O4在修饰ZrO2后的TEM照片

    Figure  1.  TEM graph of Fe3O4 after coating with ZrO2

    图  2  水溶液中的Fe3O4@ZrO2磁纳米粒子在磁场辅助下的超顺磁性

    Figure  2.  Superparamagnetism of Fe3O4@ZrO2 magnetic nanoparticles in aqueous solution assisted by applied magnetic field

    图  3  不同酶解时间对CPP水解度的影响

    Figure  3.  Effect of different enzymatic hydrolysis time on the degree of hydrolysis of CPP

    图  4  水解度对Fe3O4@ZrO2磁纳米粒子富集CPP N/P与吸附量的影响

    Figure  4.  Effects of degrees of hydrolysis on the N/P and adsorption capacity of CPP enriched by Fe3O4@ZrO2 magnetic nanoparticles

    图  5  pH对Fe3O4@ZrO2磁纳米粒子富集CPP N/P与吸附量的影响

    Figure  5.  Effect of pH on the N/P and adsorption capacity of CPP enriched by Fe3O4@ZrO2 magnetic nanoparticles

    图  6  吸附时间对Fe3O4@ZrO2磁纳米粒子富集CPP N/P与吸附量的影响

    Figure  6.  Effects of adsorption time on the N/P and adsorption capacity of CPP enriched by Fe3O4@ZrO2 magnetic nanoparticles

    图  7  吸附温度对Fe3O4@ZrO2磁纳米粒子富集CPP N/P与吸附量的影响

    Figure  7.  Effects of adsorption temperature on the N/P and adsorption capacity of CPP enriched by Fe3O4@ZrO2 magnetic nanoparticles

    图  8  Fe3O4@ZrO2磁纳米粒子富集CPP初始浓度对N/P与吸附量的影响

    Figure  8.  Effects of different initial concentration on the N/P and adsorption capacity of CPP enriched by Fe3O4@ZrO2 magnetic nanoparticles

    图  9  不同pH条件下N含量和P含量的洗脱率

    Figure  9.  Elution rate of N content and P content at different pH

  • [1] Sun Shengwei, Liu Fei, Liu Guo, et al. Effects of casein phosphopeptides on calcium absorption and metabolism bioactivityin vitro and in vivo[J]. Food & Function,2018,9(10):5220−5229.
    [2] 王永胜, 梅春升, 马力保, 等. 酪蛋白磷酸肽的生理功能及其促进动物机体对矿物质吸收说的机理[J]. 中国饲料,2007(15):8−11. [Wang Yongsheng, Mei Chunsheng, Ma Libao, et al. The physiofunction and the mechanism of enhancing animals to absorb minerals of casein phosphopeptides[J]. China Feed,2007(15):8−11. doi:  10.3969/j.issn.1004-3314.2007.15.004
    [3] 田彦梅, 张园, 叶青, 等. 益生菌发酵羊乳中酪蛋白磷酸肽的持钙能力和结合铁能力的研究[J]. 食品与发酵科技,2019,55(4):18−22. [Tian Yanmei, Zhang Yuan, Ye Qing, et al. The calcium holding and iron binding capacity of caseinphosphopeptides in fermented goat milk[J]. Food and Fermentation Sciences & Technology,2019,55(4):18−22.
    [4] Philip N, Walsh L. The potential ecological effects of casein phosphopeptide-amorphous calcium phosphate in dental caries prevention[J]. Australian Dental Journal,2019,64:66−71. doi:  10.1111/adj.12661
    [5] Elgamily H, Safwat E, Soliman Z, et al. Antibacterial and remineralization efficacy of casein phosphopeptide, glycomacropeptide nanocomplex, and probiotics in experimental toothpastes: An in vitro comparative study[J]. European Journal of Dentistry,2019,13(3):391−398.
    [6] Carmen Llena, Irene Esteve, Francisco Javier Rodríguez-Lozano, et al. The application of casein phosphopeptide and amorphous calcium phosphate with fluoride (CPP-ACPF) for restoring mineral loss after dental bleaching with hydrogen or carbamide peroxide: Anin vitro study[J]. Annals of Anatomy,2019, 225:48−53.
    [7] Abufarwa Moufida, Noureldin Amal, Azimaie Taha, et al. Preventive effects of carbon dioxide laser and casein phosphopeptide amorphous calcium phosphate fluoride varnish on enamel demineralization: A comparative, in vitro study[J]. Journal of Investigative and Clinical Dentistry, 2019, 10(2): e12400.
    [8] Naqvi Muhammad Ali, Irani Kimia Anaraki, Katanishooshtari Maryam, et al. Disorder in milk proteins: formation, structure, function, isolation and applications of casein phosphopeptides[J]. Current Protein & Peptide Science,2016,17(4):368−79.
    [9] 焦宇知. 酪蛋白磷酸肽新生产工艺及其功能性质研究[D]. 无锡: 江南大学, 2004.

    Jiao Yuzhi. Studies on novel production technologies for CPP and its functional properties[D]. Wuxi: Jiangnan University, 2004.
    [10] 李鹏章, 王粤博. 蛋白质组学中磷酸化肽的常用富集方法[J]. 化学进展,2012,24(9):1785−1793. [Li P Z, Wang Y B. Enrichment methods of phosphopeptides in proteomics[J]. Progress in Chemistry,2012,24(9):1785−1793.
    [11] Li Yan, Leng Taohua, Lin Huaqing, et al. Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry[J]. Journal of Proteome Research,2007,6(11):4498−4510. doi:  10.1021/pr070167s
    [12] Li Xiaoshui, Wu Jianhong, Zhao Yong, et al. Preparation of magnetic polymer material with phosphate group and its application to the enrichment of phosphopeptides[J]. Journal of Chromatography A,2011,1218(25):3845−3853. doi:  10.1016/j.chroma.2011.04.044
    [13] Chen Rui, Li Jianjun. Enrichment of phosphorylated mhc peptides with immobilized metal affinity chromatography and titanium dioxide particles[J]. Methods in Molecular Biology,2019,2024:259−268.
    [14] Li Yilin, Liu Liangliang, Wu Hao, et al. Magnetic mesoporous silica nanocomposites with binary metal oxides core-shell structure for the selective enrichment of endogenous phosphopeptides from human saliva[J]. Analytica Chimica Acta,2019,1079:111−119. doi:  10.1016/j.aca.2019.06.045
    [15] Xu Xiangling, Asher Sanford A. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals[J]. Journal of the American Chemical Society,2004,126(25):7940−7945.
    [16] 黄菁菁, 徐祖顺, 易昌凤. 化学共沉淀法制备纳米四氧化三铁粒子[J]. 湖北大学学报(自然科学版),2007,29(1):50−52. [Huang Jingjing, Xu Zushun, Yi Changfeng. Fe3O4 nanoparticles prepared by chemical co-precipitation method[J]. Journal of Hubei University (Natural Science),2007,29(1):50−52.
    [17] 孙俊. 功能性磁性纳米颗粒的制备及其在食品体系中的应用研究[D]. 无锡: 江南大学, 2012.

    Sun Jun. Preparation and application of functional magnetic nanoparticles in food system[D]. Wuxi: Jiangnan University, 2012.
    [18] Katrine H Ellegård, Claus Gammelgård-Larsen, Esben S Sørensen, et al. Process scale chromatographic isolation, characterization and identification of tryptic bioactive casein phosphopeptides[J]. International Dairy Journal,1999,9(9):639−652. doi:  10.1016/S0958-6946(99)00135-1
    [19] 冯凤琴, 许时婴, 王璋. 酪蛋白磷酸肽(CPPs)的分子量及持钙功能的分析[J]. 食品与发酵工业,1997,23(2):18−21. [Feng Fengqin, Xu Shiying, Wang Zhang. Discussion on the molecules size and calcium-binding capacity of casein phosphopeptides[J]. Food and Fermentation Industry,1997,23(2):18−21.
    [20] 刘清斌, 章俊, 许德富, 等. 酪蛋白磷酸肽制备工艺研究[J]. 中国酿造,2010(10):60−65. [Liu Qingbin, Zhang Jun, Xu Defu, et al. Preparation technology of casein phosphopeptides[J]. China Brewing,2010(10):60−65. doi:  10.3969/j.issn.0254-5071.2010.10.019
    [21] 中华人民共和国国家标准. GB 5009.5-2016 食品安全国家标准 食品中蛋白质的测定 [S].

    National standards of People's Republic of China.GB 5009.5-2016 National Food Safety Standard. Determination of protein in food[S].
    [22] 中华人民共和国国家标准. GB 5009.87-2016 食品安全国家标准食品中磷的测定[S].

    National standards of People’s Republic of China.GB 5009.87-2016 National Food Safety Standard. Determination of phosphorus in food[S].
    [23] 孙婷婷. 低抗原性酪蛋白磷酸肽的制备及其功能的研究[D]. 呼和浩特: 内蒙古农业大学, 2010.

    Sun Tingting. Studies on prodution technologies for low antigenicity CPP and its functional properties[D]. Huhhot: Inner MongoliaAgricultural University, 2010.
    [24] 田波, 迟玉杰. 蛋清蛋白水解物的水解程度与分子量关系的研究[J]. 食品工业科技,2002(11):14−15. [Tian Bo, Chi Yujie. Studies on the relationship between the degree of hydrolysis of egg white protein hydrolysate and molecular weight[J]. Science and Technology of Food Industry,2002(11):14−15. doi:  10.3969/j.issn.1002-0306.2002.11.005
    [25] Ho Y S, Mc Kay G. Sorption of dyes and copper ions onto biosorbents[J]. Process Biochemistry,2003,38(7):1047−1061. doi:  10.1016/S0032-9592(02)00239-X
  • 加载中
图(9)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  20
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-30
  • 网络出版日期:  2021-09-02
  • 刊出日期:  2021-10-11

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升