• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊

采后BTH处理及粉红单端孢(Trichothecium roseum)挑战接种对厚皮甜瓜果实苯丙烷代谢活性的诱导

采后BTH处理及粉红单端孢(Trichothecium roseum)挑战接种对厚皮甜瓜果实苯丙烷代谢活性的诱导[J]. 食品工业科技, 2013, (01): 323-326. doi: 10.13386/j.issn1002-0306.2013.01.079
引用本文: 采后BTH处理及粉红单端孢(Trichothecium roseum)挑战接种对厚皮甜瓜果实苯丙烷代谢活性的诱导[J]. 食品工业科技, 2013, (01): 323-326. doi: 10.13386/j.issn1002-0306.2013.01.079
Induction of phenylpropanoid metabolic activity in muskmelon fruit by postharvest BTH treatment and challenge inoculation with Trichothecium roseum[J]. Science and Technology of Food Industry, 2013, (01): 323-326. doi: 10.13386/j.issn1002-0306.2013.01.079
Citation: Induction of phenylpropanoid metabolic activity in muskmelon fruit by postharvest BTH treatment and challenge inoculation with Trichothecium roseum[J]. Science and Technology of Food Industry, 2013, (01): 323-326. doi: 10.13386/j.issn1002-0306.2013.01.079

采后BTH处理及粉红单端孢(Trichothecium roseum)挑战接种对厚皮甜瓜果实苯丙烷代谢活性的诱导

doi: 10.13386/j.issn1002-0306.2013.01.079
基金项目: 

高等学校博士学科点专项科研基金项目(20096202110004); 国家自然科学基金资助项目(30671465,31160405);

详细信息
  • 中图分类号: TS255.4

Induction of phenylpropanoid metabolic activity in muskmelon fruit by postharvest BTH treatment and challenge inoculation with Trichothecium roseum

  • 摘要: 以‘玉金香’甜瓜为试材,用0.1g/LBTH浸泡处理10min,测定BTH处理及T.roseum挑战接种对果实苯丙烷代谢关键酶活性和产物积累的影响。结果表明,BTH处理有效降低了损伤接种T.roseum的病斑直径,提高了果实体内苯丙氨酸解氨酶(PAL)、4-香豆酰-辅酶A连接酶(4CL)的活性,增加了总酚、类黄酮及木质素含量。T.roseum挑战接种可进一步促进上述苯丙烷代谢关键酶活性的提高和产物的积累。由此表明,采后BTH处理可通过诱导厚皮甜瓜果实的苯丙烷代谢来增强果实对采后病害的抗性。 
  • [1] Bi Y, Ge Y H, Wang C L, et al.Melon production in China[J].Acta Horticulturae, 2007, 731 (1) :493-500.
    [2] 张维一, 毕阳.果蔬采后病害与控制[M].北京:中国农业出版社, 1996:156-158.
    [3] 马凌云, 毕阳, 张正科, 等.采前嘧菌酯处理对‘银帝’甜瓜采前及采后主要病害的控制[J].甘肃农业大学学报, 2004, 39:14-17.
    [4] Terry L A, Joyce D C.Elicitors of induced resistance in postharvest horticultural crops:a brief review[J].Postharvest Biology and Technology, 2004, 32:1-13.
    [5] Bi Y, Li Y C, Ge Y H, et al.Induced resistance in melons by elicitors for the control of postharvest diseases[J].Plant Pathology in the21st Century, 2010, 2:31-41.
    [6] Edreva A.A novel strategy for plant protection:Induced resistance[J].Journal of Cell and Molecular Biology, 2004 (3) :61-69.
    [7] Zhang Z K, Bi Y, Ge Y H, et al.Multiple pre-harvest treatments with acibenzolar-S-methyl reduce latent infection and induce resistance in muskmelon fruit[J].Scientia Horticulturae, 2011, 130:126-132.
    [8] Cao J, Jiang W, He H.Induced resistance in Yali pear (Pyrus bretschneideri Rehd.) fruit against infection by Penicillium expansum by postharvest infiltration of acibenzolar-S-methyl[J].Phytopathology, 2005, 153:643-644.
    [9] Liu H X, Jiang W B, Bi, Y.Postharvest BTH treatment induces resistance of peach (Prunus persica L.cv.Jiubao) to infection by Penicillium expansum and enhances activity of fruit defense mechanisms[J].Postharvest Biology and Technology, 2005, 35:263-269.
    [10] 麻宝成, 朱世江.苯并噻重氮和茉莉酸甲酯对采后香蕉果实抗病性及相关酶活性的影响[J].中国农业科学, 2006, 39:1220-1227.
    [11] Vogt T.Phenylpropanoid biosynthesis[J].Molecular Plant, 2010, 3:2-20.
    [12] Cao S F, Hu Z C, Zheng Y H, et al.Effect of BTH on antioxidant enzymes, radical-scavenging activity and decay in strawberry fruit[J].Food Chemistry, 2011, 125:145-149.
    [13] Zhu X, Cao J, Wang Q, et al.Postharvest infiltration of ASM reduces infection of mango fruits (Mangifera indica L.cv.Tainong) by colletotrichum gloeosporioides and enhances resistanceinducing compounds[J].Journal of Phytopathology, 2008, 156:68-74.
    [14] 周德庆.微生物学实验教程[M].第二版.北京:高等教育出版社, 2006.
    [15] 曹建康.SA、ASM、INA和柠檬酸对鸭梨果实采后抗病性和品质的影响[D].北京:中国农业大学, 2005.
    [16] 毕阳, 张维一.感病甜瓜果实呼吸、乙烯及过氧化物酶变化的研究[J].植物病理学报, 1993, 23:69-73.
    [17] Bi Y, Tian S P, Zhao J, et al.Harpin induces local and systemic resistance against Trichotherium roseum in harvested hami melons[J].Postharvest Biology and Technology, 2005, 38:183-187.
    [18] Koukol J, Conn E E.The metabolism of aromatic and properties of the phenylalanine deaminase of Hordeum vulgare[J].Biology Chemical, 1961, 10:2692-698.
    [19] 朱明华, 欧阳观察, 薛应龙.黄瓜免疫诱导过程中G6PD、PAL、4CL、PO活性和木质素含量的变化[J].上海农业学报, 1990, 6:21-26.
    [20] Morrison I M.A semi-micro method from the determination of lignin and its use in predicting the digestibility of forage crops[J].Sci Food Agric, 1972, 23:455-463.
    [21] Pirie A, Mullins M G.Changes in anthocyanin and phenolic content of grapevine leaf and fruit tissue treated with sucrose, nitrate and abscisic acid[J].Plant Physiol, 1976, 58:468-472.
    [22] Bradford M N.A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein2dye binding[J].Annal Biochem, 1976, 72:248-254
    [23] 刘敏, 彭建清, 李建中, 等.BTH对南山甜樱桃采后生理和炭疽病的影响[J].中国南方果树, 2010, 39:23-25.
    [24] 徐兰英, 汪跃华, 庞学群, 等.BTH和BABA处理对采后沙糖桔病害和品质的影响[J].广东农业科学, 2010 (8) :256-258.
    [25] 张紫微, 朱世江.苯并噻重氮对采后枇杷果实病害及品质的影响[J].食品科学, 2009, 30:264-267.
    [26] Cao J K, Jiang W B.Induction of resistance in Yali pear (Pyrus bertschneideri Reld.) fruit against postharvest diseases by acibenzolar-S-methyl sprays on trees during fruit growth[J].Scientia Horticulturae, 2005, 110:181-186.
    [27] Mauch-Mani B, Slusarenko A J.Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica[J].The Plant Cell, 1996, 8:203-212.
    [28] Whetten R, Sederoff R.Lignin biosynthesis[J].The Plant Cell, 1995, 7:1001-1013.
    [29] Lin T C.Accumulation of H2O2in xylem fluids of cucumber stems during ASM-induced systemic acquired resistance (SAR) involves increased LOX activity and transient accumulation of Shikimic acid[J].Plant Pathol, 2009, 125:119-130.
  • 加载中
计量
  • 文章访问数:  44
  • HTML全文浏览量:  8
  • PDF下载量:  457
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-03

目录

    /

    返回文章
    返回

    重要通知

    第五届食品科技论坛,2022.7.26-27,与您相约在南京!